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Abstract. Let Σ be a compact oriented surface of genus g with one boundary com-
ponent. Homology cylinders over Σ form a monoid IC into which the Torelli group I
of Σ embeds by the mapping cylinder construction. Two homology cylinders M and
M ′ are said to be Yk-equivalent if M ′ is obtained from M by “twisting” an arbitrary
surface S ⊂M with a homeomorphim belonging to the k-th term of the lower central
series of the Torelli group of S. The Jk-equivalence relation on IC is defined in a
similar way using the k-th term of the Johnson filtration. In this paper, we charac-
terize the Y3-equivalence with three classical invariants: (1) the action on the third
nilpotent quotient of the fundamental group of Σ, (2) the quadratic part of the relative
Alexander polynomial, and (3) a by-product of the Casson invariant. Similarly, we
show that the J3-equivalence is classified by (1) and (2). We also prove that the core of
the Casson invariant (originally defined by Morita on the second term of the Johnson
filtration of I) has a unique extension (to the corresponding submonoid of IC) that is
preserved by Y3-equivalence and the mapping class group action.

1. Introduction

Let Σ be a compact connected oriented surface with one boundary component, and
let g ≥ 0 be the genus of Σ. A homology cobordism of Σ is a pair (M,m) where
M is a compact connected oriented 3-manifold and m : ∂ (Σ× [−1, 1]) → ∂M is an
orientation-preserving homeomorphism such that the inclusions m± : Σ → M defined
by x 7→ m(x,±1) induce isomorphisms H∗(Σ;Z) → H∗(M ;Z). Thus the 3-manifold
M is a cobordism (with corners) between ∂+M := m+(Σ) and ∂−M := m−(Σ). It is
convenient to denote the cobordism (M,m) simply by M , the convention being that the
boundary parametrization is always denoted by the lower-case letter m. In particular,
we shall denote the trivial cobordism (Σ× [−1, 1], Id) simply by Σ× [−1, 1]. The set of
homeomorphism classes of homology cobordisms of Σ is denoted by

C := C(Σ),

where two homology cobordisms M,M ′ are considered homeomorphic if there is an
orientation-preserving homeomorphism f : M → M ′ such that f |∂M ◦ m = m′. The
composition of two cobordisms M and M ′ is defined by “stacking” M ′ on the top of M ,
i.e. we define

M ◦M ′ := M ∪m+◦(m′−)−1 M ′

with ∂(M ◦M ′) parametrized in the obvious way. So there is a monoid structure on C.
The mapping class group of Σ is the group of isotopy classes of self-homeomorphisms

of Σ that leave the boundary pointwise invariant. We shall denote it by

M :=M(Σ).

The mapping cylinder construction c :M→ C is defined in the usual way by

(1.1) c(s) :=
Ä
Σ× [−1, 1], (Id×(−1)) ∪ (∂Σ× Id) ∪ (s× 1)

ä
.

Since the homomorphism c is injective, we shall sometimes consider the group M as a
submonoid of C and remove c from our notation. A base point ? being fixed on ∂Σ,
the mapping class group acts on the fundamental group π := π1(Σ, ?). The resulting
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homomorphism ρ : M → Aut(π) is known as the Dehn–Nielsen representation and is
injective. For each k ≥ 0, this representation induces a group homomorphism

(1.2) ρk :M−→ Aut(π/Γk+1π)

where π = Γ1π ⊃ Γ2π ⊃ Γ3π ⊃ · · · denotes the lower central series of π. The Johnson
filtration of the mapping class group is the decreasing sequence of subgroups

M =M[0] ⊃M[1] ⊃M[2] ⊃M[3] ⊃ · · ·
whereM[k] denotes the kernel of ρk for all k ≥ 1. The group π being residually nilpotent,
the Johnson filtration has trivial intersection. By virtue of Stallings’ theorem [61], each
homomorphism ρk can be extended to the monoid C, so that we have a filtration

C = C[0] ⊃ C[1] ⊃ C[2] ⊃ C[3] ⊃ · · ·
of C by submonoids [17]. But the intersection of this filtration is far from being trivial
since, for g = 0, we have C[k] = C for all k ≥ 0.

The first term M[1] of the Johnson filtration is known as the Torelli group of the
surface Σ. This is the subgroup of M acting trivially on the first homology group
H := H1(Σ;Z). We shall denote it here by

I := I(Σ).

The study of this group, from a topological point of view, started with works of Birman
[5] and was followed by Johnson in the eighties. The reader is referred to his survey [31]
for an overview of his work. The Torelli group is residually nilpotent for the following
reason: the commutator of two subgroups M[k] and M[l] of the Johnson filtration is
contained in M[k + l] for all k, l ≥ 1, so that the lower central series of I

I = Γ1I ⊃ Γ2I ⊃ Γ3I ⊃ · · ·
is finer than the Johnson filtration (i.e. we have ΓkI ⊂M[k]). The graded Lie ring

GrΓ I :=
⊕
i≥1

ΓiI
Γi+1I

has been computed explicitly in degree i = 1 by Johnson [33] and in degree i = 2 with
rational coefficients by Morita [51, 53]. Computations in degree i = 2 with integral coef-
ficients have also been done by Yokomizo [66]. Johnson’s computation of the abelianized
Torelli group I/Γ2I involves the action of I on π/Γ3π as well as the Rochlin invariant
of homology 3-spheres in the form of some homomorphisms introduced by Birman and
Craggs [6]. Morita’s computation of (Γ2I/Γ3I) ⊗ Q involves refinements of the latter
invariants, namely the action of I on π/Γ4π and the Casson invariant. Besides, Hain
found a presentation of the graded Lie algebra GrΓI⊗Q using mixed Hodge theory [25].

Thus 3-dimensional invariants play an important role in Johnson and Morita’s works
on the Torelli group. In the same perspective, let us consider the monoid

IC := IC(Σ)

of homology cylinders over Σ, i.e. homology cobordisms M such that (m−)−1
∗ ◦ (m+)∗ is

the identity of H. The Torelli group I embeds into the monoid IC by the homomorphism
c and, for g = 0, the monoid IC can be identified with the monoid of homology 3-
spheres. The monoid of homology cylinders has been introduced in great generality by
Goussarov [18] and Habiro [22] in connection with finite-type invariants of 3-manifolds.
Their approach to the monoid IC and, at the same time, to the group I has been the
subject of several recent works: see the survey [24]. As a substitute to the lower central
series for the monoid IC, Goussarov and Habiro consider the filtration

IC = Y1IC ⊃ Y2IC ⊃ Y3IC ⊃ · · ·
where the submonoid YiIC consists of the homology cylinders that are Yi-equivalent
to Σ × [−1, 1]. Here two compact oriented 3-manifolds M and M ′ (with parametrized



3

boundary if any) are said to be Yk-equivalent if M ′ can be obtained from M by “twisting”
an arbitrary embedded surface E in the interior of M with an element of the k-th term
of the lower central series of the Torelli group I(E) of E. (Here the surface E has an
arbitrary position in M , but it is assumed to be compact connected oriented with one
boundary component.) The identity IC = Y1IC is not trivial [22, 21]. This means in
genus g = 0 that any homology 3-sphere is Y1-equivalent to S3 which, according to
Hilden [26], has first been observed by Birman. (More generally, the Y1-equivalence is
characterized for closed oriented 3-manifolds by Matveev in [44].) The “clasper calculus”
developed by Goussarov and Habiro [19, 22, 15] offers the appropriate tools to study
the Yk-equivalence relation, since this relation is generated by “clasper surgery” along
graphs with k nodes. With these methods, Goussarov [18, 19] and Habiro [22] proved
among other things that each quotient monoid YiIC/Yi+1 is an abelian group and that

GrY IC :=
⊕
i≥1

YiIC
Yi+1

has a natural structure of graded Lie ring. This has been computed explicitly in degree
i = 1 by Habiro in [22] and the authors in [43], where the Y2-equivalence on IC is shown
to be classified by the action on π/Γ3π and the Birman–Craggs homomorphism. Thus
the determination of IC/Y2 goes parallel to Johnson’s computation of I/Γ2I and the two
groups happen to be isomorphic via c (for g ≥ 3). Besides, diagrammatic descriptions
of the graded Lie algebra GrY IC ⊗Q are obtained in [23] using clasper calculus and the
LMO homomorphism

Z : IC −→ A(HQ)

which takes values in a graded algebra A(HQ) of diagrams “colored” by the symplectic
vector space HQ := H1(Σ;Q). This invariant of homology cylinders is derived from a
functorial extension [8] of the LMO invariant [35], so that it is universal among rational-
valued finite-type invariants.

In this paper, we shall classify the Y3-equivalence relation on IC. In addition to the
action ρ3(M) ∈ Aut(π/Γ4π) and to the Casson invariant λ(M) ∈ Z – which have been
both used by Morita for the computation of (Γ2I/Γ3I) ⊗ Q – we need the Alexander
polynomial of homology cylinders M relative to their “bottom” boundary ∂−M . More
precisely, we define the relative Alexander polynomial of M ∈ IC as the order of the
relative homology group of (M,∂−M) with coefficients twisted bym−1

±,∗ : H1(M ;Z)→ H:

∆(M,∂−M) := ordH1(M,∂−M ;Z[H]) ∈ Z[H]/±H.

The multiplicative indeterminacy in ±H can be fixed by considering a relative version of
the Reidemeister–Turaev torsion introduced by Benedetti and Petronio [4, 14]. For this
refinement of the relative Alexander polynomial, it is necessary to fix an Euler structure
on (M,∂−M), i.e. a homotopy class of vector fields on M with prescribed behaviour on
the boundary. We shall see that homology cylinders M have a preferred Euler structure
ξ0, so that the class ∆(M,∂−M) has a preferred representative

τ(M,∂−M ; ξ0) ∈ Z[H].

This invariant of homology cylinders features the same finiteness properties as the
Reidemeister–Turaev torsion of closed oriented 3-manifolds [42]. More precisely, if we
denote by I the augmentation ideal of Z[H], then the reduction of τ(M,∂−M ; ξ0) mod-
ulo Ik+1 is for every k ≥ 0 a finite-type invariant of degree k in the sense of Goussarov
and Habiro. In particular, a “quadratic part”

α(M) ∈ I2/I3 ' S2H

can be extracted from τ(M,∂−M ; ξ0) and is a finite-type invariant of degree 2. Then our
characterization of the Y3-equivalence for homology cylinders takes the following form.
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Theorem A. Let M and M ′ be two homology cylinders over Σ. The following assertions
are equivalent:

(a) M and M ′ are Y3-equivalent;
(b) M and M ′ are not distinguished by any Goussarov–Habiro finite-type invariants

of degree at most 2;
(c) M and M ′ share the same invariants ρ3, α and λ;
(d) The LMO homomorphism Z agrees on M and M ′ up to degree 2.

In genus g = 0, the theorem asserts that two homology 3-spheres are Y3-equivalent if
and only if they have the same Casson invariant, which is due to Habiro [22]. The
equivalence between conditions (a), (b) and (d) is based on the universality of the LMO
homomorphism among Q-valued finite-type invariants, its good behaviour under clasper
surgery and the torsion-freeness of a certain space of diagrams. Next the equivalence of
condition (c) with the other three follows by determining precisely how the invariants
ρ3, α and λ are diagrammatically encoded in the LMO homomorphism. We emphasize
that the Birman–Craggs homomorphism, which is needed to classify the Y2-equivalence,
do not appear explicitly in the above statement for the Y3-equivalence: indeed it is
determined by the triplet (ρ3, α, λ) as we shall see in detail. Furthermore, we shall use
the diagrammatic techniques of clasper calculus to compute the group IC/Y3 and show
some of its properties.

We shall also be interested in the Jk-equivalence relation among homology cylinders.
This relation is defined for every k ≥ 1 in a way similar to the Yk-equivalence but using
the Johnson filtration of the Torelli group instead of its lower central series. It follows
from these definitions that J1 = Y1 and that Yk implies Jk for every k ≥ 1. But the
converse is not true for k ≥ 2 as illustrated by the following statements.

Theorem B. Two homology cylinders M and M ′ over Σ are J2-equivalent if and only
if we have ρ2(M) = ρ2(M ′).

In genus g = 0, the theorem asserts that any homology 3-sphere is J2-equivalent to
S3. This is already noticed by Morita in [51] and follows from Casson’s observation
that any homology 3-sphere is obtained from S3 by a finite sequence of surgeries along
(±1)-framed knots [20]. (A generalization of this result to closed oriented 3-manifolds
is proved by Cochran, Gerges and Orr in [11].) Although it does not seem to have been
observed before, Theorem B easily follows from the computation of IC/Y2 done in [43].

Theorem C. Two homology cylinders M and M ′ over Σ are J3-equivalent if and only
if we have ρ3(M) = ρ3(M ′) and α(M) = α(M ′).

In genus g = 0, we obtain that any homology 3-sphere is J3-equivalent to S3, which is
due to Pitsch [59]. The proof of Theorem C makes use of Theorem A.

Let us now come back to the Casson invariant of homology cylinders which appears in
Theorem A. In contrast to ρ3 and α, the invariant λ is not canonical. Indeed it depends
on the choice of a Heegaard embedding j : Σ ↪→ S3 and λ(M) := λj(M) is defined as
the Casson invariant of the homology 3-sphere obtained by inserting M in place of a
regular neighborhood of j(Σ) ⊂ S3. In the case of the Torelli group, Morita considered
the restriction of λ to the Johnson subgroup

K := K(Σ)

which coincides with the second term M[2] of the Johnson filtration. He proved that
λ|K is a group homomorphism which can be written as the sum of two homomorphisms
K → Q: one of them is not canonical and is determined by ρ3, while the other one is
(up to a 1/24 factor) a canonical homomorphism d : K → 8Z and is called the core of
the Casson invariant. In the case of homology cylinders, the second term C[2] of the
Johnson filtration of C is denoted by

KC := KC(Σ).
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Theorem D. Assume that g ≥ 3. Then there is a unique extension of the core of the
Casson invariant to the monoid KC

K d //

c

��

8Z

KC
d

==z
z

z
z

that is invariant under Y3-equivalence and under the action of the mapping class group
by conjugation. Moreover, the monoid homomorphism d : KC → 8Z can be written
explicitly in terms of ρ3, α and λ.

When M ∈ KC belongs to the Johnson subgroup K, we have α(M) = 0 and our formula
for d(M) coincides with Morita’s formula [51, 53]. We shall also see that the assumption
g ≥ 3 in Theorem D can be removed by stabilization of the surface Σ.

In another paper [55], Morita gave a topological interpretation of d(h) for h ∈ K as
the signature defect of the mapping torus of h equipped with a certain 2-framing. It
would be very interesting to generalize this intrinsic description of d : K → 8Z to the
monoid KC. See [13] in this connection.

The paper is organized as follows:
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In the rest of the paper, we shall use the following conventions. We denote by I the
interval [−1, 1]. An abelian group G, or its action on a set, is written additively, except
when it is seen as a subgroup of the group of units of Z[G]. Besides, (co)homology
groups are taken with Z coefficients if no coefficients are specified.
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2. Preliminaries on the equivalence relations

In this section, we give the precise definitions of the Yk-equivalence and the Jk-
equivalence relations on 3-manifolds, and we recall their relationship with the Goussarov–
Habiro theory of finite-type invariants.

2.1. Definition of the equivalence relations. Let R be a closed oriented surface,
which may be empty or disconnected. We consider compact connected oriented 3-
manifolds M whose boundary is parametrized by R, i.e. M comes with an orientation-
preserving homeomorphism R→ ∂M which is denoted by the lower-case letter m. Two
such manifolds with parametrized boundary M and M ′ are considered homeomorphic if
there is an orientation-preserving homeomorphism f : M → M ′ such that f ◦m = m′.
We denote by V(R) the set of homeomorphism classes of compact connected oriented
3-manifolds with boundary parametrized by R.

One way to modify an M ∈ V(R) is to choose a compact oriented connected surface
S ⊂ int(M) with one boundary component, and an element s ∈ I(S) of the Torelli
group of S. We then define

Ms :=
Ä
M \ int(S × [−1, 1])

ä
∪ c(s)

where S × [−1, 1] denotes a regular neighborhood of S in M and c(s) is the mapping
cylinder of s defined by (1.1). The boundary parametrization of MS is defined from m
in the obvious way. The move M ;Ms in V(R) is called a Torelli surgery.

Let k ≥ 1 be an integer, and consider two compact connected oriented 3-manifolds
M and M ′ with boundary parametrized by R. We say that M is Yk-equivalent to
M ′ if there is a Torelli surgery M ; Ms such that Ms = M ′ ∈ V(R) and the gluing
homeomorphism s belongs to the k-th term ΓkI(S) of the lower central series of I(S).
(Recall that the lower central series of a group G is defined inductively by Γ1G := G
and Γk+1G := [G,ΓkG] for all k ≥ 1.) It is easily checked that the Yk-equivalence is an
equivalence relation on the set V(R). The Jk-equivalence relation on V(R) is defined in
a similar way using the k-th term of the Johnson filtration instead of the lower central
series. Thus we have defined an infinity of equivalence relations, which are organized as
follows:

Y1 ⇐= Y2 ⇐= Y3 ⇐= · · · Yk ⇐= Yk+1 ⇐= · · ·
‖ ⇓ ⇓ ⇓ ⇓
J1 ⇐= J2 ⇐= J3 ⇐= · · · Jk ⇐= Jk+1 ⇐= · · ·

The weakest of these relations, namely the Y1-equivalence, is already non-trivial since a
Torelli surgery M ;Ms comes with a canonical isomorphism

(2.1) H1(M)
Φs

'
//__________________ H1(Ms),

H1

Ä
M \ int(S × [−1, 1])

äincl∗

hhhhRRRRRRRRRRRRR incl∗

55 55llllllllllllll
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whose existence is easily deduced from the Mayer–Vietoris theorem.
In this paper, we shall restrict our study to the class of homology cylinders over Σ,

as defined in the introduction, i.e. to the subset

IC(Σ) ⊂ V
Ä
∂(Σ× [−1, 1])

ä
.

The Yk-equivalence and the Jk-equivalence relations are preserved by stabilization of
the surface Σ. More precisely, assume that Σs is the boundary connected sum of Σ
with another compact connected oriented surface Σ′ having one boundary component
as shown in Figure 2.1. Then, there is a canonical injection

(2.2) IC(Σ) −→ IC(Σs), M 7−→M s

obtained by gluing to any homology cylinder M over Σ the trivial cylinder Σ′ × I

along the square (Σ ∩ Σ′) × I. Then the implications M
Yk∼ N ⇒ M s Yk∼ N s and

M
Jk∼ N ⇒M s Jk∼ N s obviously hold true for any k ≥ 1.

Σs

Σ Σ′

Figure 2.1. A stabilization Σs of the surface Σ.

The Yk-equivalence and the Jk-equivalence relations can also be defined in terms of
Heegaard splittings. Let us formulate this in the case of homology cylinders. A homology
cylinder M over Σ has a “bottom surface” ∂−M = m−(Σ) and a “top surface” ∂+M =
m+(Σ). Some collar neighborhoods of them are suggestively denoted by ∂−M × [−1, 0]
and ∂+M × [0, 1]. A Heegaard splitting of M of genus r is a decomposition

M = M− ∪M+,

where M− is obtained from ∂−M × [−1, 0] by adding r 1-handles along ∂−M ×{0}, M+

is obtained from ∂+M × [0, 1] by adding r 1-handles along ∂+M ×{0}, and M− ∩M+ =
∂M− ∩ ∂M+ is called the Heegaard surface. Note that the Heegaard surface is a 2-
sided compact connected surface of genus g+ r with one boundary component which is
properly embedded in M ; we give it the orientation inherited from M−. Any homology
cylinder M has a Heegaard splitting, since the cobordism M can be obtained from the
trivial cobordism Σ× [−1, 1] by attaching simultaneously some 1-handles along the “top
surface” Σ × {1} and, next, some 2-handles along the new “top surface”. This fact
follows from elementary Morse theory and is true for any 3-dimensional cobordism [48].

Lemma 2.1. Two homology cylinders M,M ′ over Σ are Yk-equivalent (respectively Jk-
equivalent) if and only if there is a Heegaard splitting M = M− ∪M+ with Heegaard
surface S and an s ∈ ΓkI(S) (respectively an s ∈M(S)[k]) such that M ′ = M− ∪sM+.

Proof. Assume that M ′ = Me ∈ IC where Me is the result of a Torelli surgery along
a compact connected oriented surface E ⊂ int(M) with one boundary component. We
consider a regular neighborhood E × [−1, 1] of E in M that does not meet the collar
neighborhood ∂−M× [−1, 0], and where E×{0} is the surface E itself. Next we connect
E × [−1, 0] to ∂−M × [−1, 0] by a solid tube T : more precisely, T meets E × [−1, 0]
along a disk of E × {−1} and it meets ∂−M × [−1, 0] along a disk of ∂−M × {0}. Thus
the union

L− := (∂−M × [−1, 0]) ∪ T ∪ (E × [−1, 0])
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is obtained from ∂−M × [−1, 0] by attaching some 1-handles (twice the genus of E). Let
L+ be the closure in M of M \ L−, which we regard as a cobordism with corners from
R := L− ∩ L+ to ∂+M . This cobordism has a handle decomposition

(2.3) L+ =
Ä

(R× [0, 1]) ∪ 1-handles
ä
∪ 2-handles.

Note that the surface R ⊂M contains E and, after an isotopy, we can assume that the
1-handles in (2.3) are attached to R × {1} outside the surface E × {1}. Now, we can
“stretch” each of these 1-handles towards R × {0}, where by “stretching” a 1-handle
[−1, 1] × D2 we mean replacing it with [−1 − ε, 1 + ε] × D2 for some positive ε, so
that the “stretched” 1-handles are now attached to R×{0} outside the surface E×{0}.
Furthermore, we can “contract” the resulting 1-handles so that they are all disjoint from
∂+M . Here, by “contracting” a 1-handle D1×D2 we mean replacing it with D1× (εD2)
for some ε ∈ ]0, 1[. We now define M− to be the union of L− with these “stretched”
and “contracted” 1-handles, and we define M+ as the exterior in L+ of those 1-handles.
Thus we have found a Heegaard splitting M− ∪ M+ of M , whose Heegaard surface
S := M− ∩M+ contains E as a subsurface. The conclusion easily follows. �

2.2. Description by clasper surgery. Generators for the Yk-equivalence relations are
known, which makes these easier to study than the Jk-equivalence relations. Indeed the
Yk-equivalence is generated by surgery along graph claspers of degree k. This viewpoint,
which we shall briefly recall, has been developed by Goussarov [18, 19] and Habiro [22]:
the Yk-equivalence relation is the same as the “(k − 1)-equivalence” in [18] or the “Ak-
equivalence” in [22].

Let M be a compact oriented 3-manifold. In the terminology of [22], a graph clasper
in M is a compact, connected surface G embedded in int(M), which comes decomposed
between leaves, nodes and edges. Leaves are annuli and nodes are discs. Edges are
1-handles connecting leaves and nodes, so that each edge has two “ends” (the attaching
locus of the 1-handle). Each leaf should have exactly one end of an edge attached to it,
while each node should have exactly three ends of edges attached to it. See Figure 2.2
for an example of a graph clasper.

an edge

a node

a leaf

=

Figure 2.2. An example of graph clasper with 3 nodes, 3 leaves and 6
edges. (And how it is drawn with the blackboard framing convention.)

Given a graph clasper G ⊂M , one can forget the leaves of G and collapse the rest to a
one-dimensional graph. This finite graph, which has vertices of valency 1 or 3, is called
the shape of G. Then one can be interested in graph claspers of a specific shape. For
example, a Y -graph is a graph clasper with shape Y, and a graph clasper is said to be
looped if its shape contains a loop (as is the case in Figure 2.2).

The degree of a graph clasper G is the number of nodes contained in G. Graph claspers
of degree 0 are called basic claspers in [22] and consist of only one edge and two leaves:
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Surgery along a graph clasper G ⊂ M is defined as follows. We first replace each node
with three leaves linking like the Borromean rings in the following way:

−→

Thus, we obtain a disjoint union of basic claspers. Next, we replace each basic clasper
with a 2-component framed link as follows:

−→

Then, surgery along the graph clasper G is defined to be the surgery along the framed
link thus obtained in M . The resulting 3-manifold is denoted by MG.

Proposition 2.2 (Habiro [22]). For any integer k ≥ 1, the Yk-equivalence relation is
generated by surgeries along graph claspers of degree k.

See the appendix of [41] for a proof.
A “calculus of claspers” is developed in [19, 22, 15], in the sense that some specific

“moves” between graph claspers are shown to produce by surgery homeomorphic 3-
manifolds. This calculus can be regarded as a topological analogue of the commutator
calculus in groups [22]. Thanks to Proposition 2.2, this calculus has proved to be a
very efficient tool for the study of the Yk-equivalence relations and, here again, we shall
use it in a crucial way. For the reader’s convenience, we have collected all the technical
results on claspers that we shall need in Appendix A. In particular, we need a number
of relations satisfied by graph claspers G with special leaves, i.e. leaves which bound
disks disjoint from G and which are (−1)-framed.

2.3. Relationship with finite-type invariants. The Yk-equivalence relations are
closely connected to finite-type invariants. Here, we are referring to the Goussarov–
Habiro theory of finite-type invariants for compact oriented 3-manifolds [18, 15, 22],
which essentially generalizes Ohtsuki’s theory [56] for homology 3-spheres but differs
from the Cochran–Melvin theory [12].

We fix as in §2.1 a closed oriented surface R. We also consider a Y1-equivalence class
Y ⊂ V(R). An invariant f : Y → A of manifolds in this class with values in an abelian
group A is said to be a finite-type invariant of degree at most d if we have∑

P⊂{0,...,d}
(−1)|P | · f(MP ) = 0 ∈ A

for any M ∈ Y, for any pairwise-disjoint surfaces S0 t · · · t Sd ⊂ int(M) and for any
s0 ∈ I(S0), . . . , sd ∈ I(Sd), where MP ∈ V(R) is obtained from M by simultaneous
Torelli surgeries along the surfaces Sp for which p ∈ P . In other words, f behaves like
a “polynomial” map of degree at most d with respect to Torelli surgeries. The original
definition by Goussarov [18] and Habiro [22] involves clasper surgery instead of Torelli
surgery, but it follows from Proposition 2.2 that the two definitions are equivalent.

Lemma 2.3 (Goussarov [18], Habiro [22]). Let M,M ′ ∈ Y. If M and M ′ are Yd+1-
equivalent, then we have f(M) = f(M ′) for any finite-type invariant f : Y → A of
degree at most d.

Proof. Let S ⊂ int(M) be the surface along which the Torelli surgery M ; Ms yields
M ′ for some s ∈ Γd+1I(S). Let Z ·Y be the abelian group freely generated by the set
Y, to which f extends by linearity. We denote by Z[I(S)] the group ring of I(S) with
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augmentation ideal I. The map I(S)→ Y defined by r 7→Mr extends by linearity to a
map ζ : Z[I(S)]→ Z·Y. It follows from the definition of a finite-type invariant that

f ◦ ζ
Ä
Id+1

ä
= 0.

By assumption, s−1 ∈ Z[I(S)] belongs to Id+1, so that we have f(Ms−M) = 0 ∈ A. �

According to [22, 21], any homology cylinder over Σ is Y1-equivalent to the trivial
cylinder, so that the above applies to the class Y := IC(Σ). Goussarov and Habiro
have conjectured the converse of Lemma 2.3 to be true for homology cylinders, and they
proved this converse in genus g = 0 [19, 22]. The conjecture is also known to be true in
degree d = 2 (as will follow from Theorem A too), and in some weaker forms [41].

3. Some classical invariants of homology cylinders

In this section, we define the topological invariants of homology cylinders that are
needed to characterize the Yk-equivalence and the Jk-equivalence relations for k = 2
and k = 3. We also describe some of their relationship, and their variation under
surgery along a graph clasper.

3.1. Johnson homomorphisms. The Johnson homomorphisms have been introduced
and studied by Johnson [28, 31] and Morita [54] on the Torelli group, and by Garoufalidis–
Levine [17] and Habegger [21] on the monoid of homology cylinders.

First of all, we recall how the Johnson filtration is defined. Using the same notation
as in the introduction, we set π := π1(Σ, ?) for the fundamental group of Σ (with base
point ? on the boundary), and we denote by π = Γ1π ⊃ Γ2π ⊃ Γ3π ⊃ · · · the lower
central series of π. Let (M,m) be a homology cobordism of Σ. According to Stallings
[61], the map m± induces an isomorphism m±,∗ at the level of the k-th nilpotent quotient
π1(·)/Γk+1π1(·) of the fundamental group, so that the composition m−,∗

−1◦m+,∗ defines
an element of Aut (π/Γk+1π). (Here, the base point of M is m(?, 0) and is connected to
m±(?) = m(?,±1) through the segment m({?} × I) ⊂ ∂M .) So for each k ≥ 0 we get a
monoid homomorphism

ρk : C −→ Aut (π/Γk+1π) , M 7−→ m−,∗
−1 ◦m+,∗

which is the group homomorphism (1.2) on the mapping class group. Thus, ρk should be
thought of as the “k-th nilpotent approximation” of the Dehn–Nielsen representation.
The descending sequence of submonoids

C = C[0] ⊃ C[1] ⊃ C[2] ⊃ · · · ,

where C[k] is the kernel of ρk, is called the Johnson filtration of C. We are particularly
interested in the monoids C[1] = IC and C[2] = KC.

The k-th Johnson homomorphism τk is then defined in the following way. An element
f ∈ Hom (H,Γk+1π/Γk+2π) defines an automorphism of π/Γk+2π by sending any {x} ∈
π/Γk+2π to f({x}) · {x−1}. Thus we obtain an exact sequence of groups

1→ Hom (H,Γk+1π/Γk+2π)→ Aut (π/Γk+2π)→ Aut (π/Γk+1π)

and the restriction of ρk+1 to the submonoid C[k] yields a monoid homomorphism

τk : C[k] −→ Hom (H,Γk+1π/Γk+2π) ' H∗ ⊗ Γk+1π/Γk+2π ' H ⊗ Γk+1π/Γk+2π.

Here, the group H is identified with H∗ = Hom(H,Z) by the map h 7→ ω(h, ·) using the
intersection form of Σ

ω : H ×H −→ Z.
One usually restricts the target of the k-th Johnson homomorphism in the following way.
We denote by L(H) the graded Lie ring freely generated by H in degree 1. There is a
canonical isomorphism between L(H) and the graded Lie ring GrΓ π =

⊕
k≥1 Γkπ/Γk+1π
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associated to the lower central series of π [7]. Therefore, τk can be seen with values in
H ⊗ Lk+1(H). It turns out that τk takes values in the kernel of the Lie bracket map

Dk(H) := Ker ([·, ·] : H ⊗ Lk+1(H) −→ Lk+2(H)) ,

see [54, 17]. Here are a few properties of the k-th Johnson homomorphism τk:

• τk : C[k]→ Dk(H) is surjective [17, 21];
• τk is Yk+1-invariant (since the map ρk+1 is invariant under Yk+1-equivalence as

follows, for example, from Lemma 6.1 below);
• τk is invariant under stabilization in the sense that, if Σ is stabilized to a surface

Σs as shown in Figure 2.1 so that H embeds into Hs := H1(Σs), then the
following diagram is commutative:

C(Σ)[k]

τk
��

// C(Σs)[k]

τk
��

Dk(H) // Dk(H
s).

We now specialize to the cases k = 1 and k = 2 which will be enough for our purposes.
Then the free abelian group Dk(H) has the following description. For k = 1, there is an
isomorphism

(3.1) Λ3H
'−→ D1(H)

given by a ∧ b ∧ c 7→ a⊗ [b, c] + c⊗ [a, b] + b⊗ [c, a], see [28]. For k = 2, the description

of Dk(H) is more delicate and involves
(
Λ2H ⊗ Λ2H

)S2 , i.e. the symmetric part of the
second tensor power of Λ2H. This free abelian group contains an isomorphic image of
the degree 2 part S2Λ2H of the symmetric algebra over Λ2H, which we regard as a

quotient of the tensor algebra over Λ2H. Indeed, the map S2Λ2H →
(
Λ2H ⊗ Λ2H

)S2

sending x · y to (x ↔ y) := x ⊗ y + y ⊗ x is injective, and we denote its image by
Λ2H ↔ Λ2H. Note that we have an isomorphism

Λ2H

2 · Λ2H
'−→

(
Λ2H ⊗ Λ2H

)S2

Λ2H ↔ Λ2H
, {a ∧ b} 7−→ {(a ∧ b)⊗ (a ∧ b)},

hence a short exact sequence of abelian groups:

(3.2) 0 // S2Λ2H
↔ //

(
Λ2H ⊗ Λ2H

)S2 // Λ2H
2·Λ2H

// 0

where the map on the right side sends tensors of the form (a∧b)⊗(a∧b) to {a∧b}. Finally,

note that Λ4H can be embedded in
(
Λ2H ↔ Λ2H

)
⊂
(
Λ2H ⊗ Λ2H

)S2 by sending any
4-vector a ∧ b ∧ c ∧ d to the sum

(a ∧ b)↔ (c ∧ d)− (a ∧ c)↔ (b ∧ d) + (a ∧ d)↔ (b ∧ c).

Proposition 3.1 (Morita, Levine). There is a unique isomorphism

(3.3)

(
Λ2H ⊗ Λ2H

)S2

Λ4H
'−→ D2(H)

that is defined by

(3.4)
Ä
(a ∧ b)↔ (c ∧ d)

ä
7→ a⊗ [b, [c, d]] + b⊗ [[c, d], a] + c⊗ [d, [a, b]] + d⊗ [[a, b], c].

Sketch of the proof. The map (3.3) is defined by Morita in [51, 53], where the abelian

group
(
Λ2H ⊗ Λ2H

)S2/Λ4H is denoted by T . There, Morita states that the map is
injective, and the bijectivity of (3.3) is essentially proved by Levine in [39]. To show
that the map (3.3) is uniquely defined, we consider the map

η : (Λ2H ↔ Λ2H) −→ D2(H)
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defined by formula (3.4). Taking rational coefficients, we get a homomorphism η ⊗ Q
from

(
Λ2H ⊗ Λ2H

)S2 ⊗Q = (Λ2H ↔ Λ2H)⊗Q to D2(H)⊗Q. For all a, b ∈ H,

(η ⊗Q)
Ä
(a ∧ b)⊗ (a ∧ b)

ä
=

1

2
(η ⊗Q)

Ä
(a ∧ b)↔ (a ∧ b)

ä
=

1

2
(2 · a⊗ [b, [a, b]] + 2 · b⊗ [[a, b], a])

belongs to D2(H) ⊂ D2(H)⊗Q. Thus, the restriction of η⊗Q to
(
Λ2H ⊗ Λ2H

)S2 takes
values in D2(H), and a simple computation shows that it vanishes on the image of Λ4H.
This discussion shows that the homomorphism (3.3) is well-defined and is determined
by the formula (3.4).

Following Levine [38, 39], we consider the quasi-Lie ring L′(H) freely generated by
H and, similarly to Dk(H), we define

D′k(H) := Ker
(
[·, ·] : H ⊗ L′k+1(H) −→ L′k+2(H)

)
.

The natural group homomorphism L′(H) → L(H) induces a group homomorphism
D′(H)→ D(H) which, in degree 2, happens to be injective but not surjective [38]:

(3.5) 0 // D′2(H) // D2(H)
L // (Λ2H)⊗ Z2

// 0.

Here the map L is defined by an application of the “snake lemma”. Levine also considers

the map η′ : S
2Λ2H
Λ4H

−→ D′2(H) defined by

{(a ∧ b) · (c ∧ d)} η′7−→ a⊗ [b, [c, d]] + b⊗ [[c, d], a] + c⊗ [d, [a, b]] + d⊗ [[a, b], c].

(This map η′ is actually the degree 2 case of a more general construction, which trans-
forms tree Jacobi diagrams to elements of D′(H): see §4 in this connection.) From the
definition of Levine’s map L, we see that the following diagram is commutative:

0 // S2Λ2H
Λ4H

↔ //

η′

��

(Λ2H⊗Λ2H)
S2

Λ4H
//

η⊗Q
��

Λ2H
2·Λ2H

//

'
��

0

0 // D′2(H) // D2(H)
L // (Λ2H)⊗ Z2

// 0

The map η′ is bijective in degree 2 [39]. We conclude that (3.3) is an isomorphism. �

In the sequel, the identifications (3.1) and (3.3) will be implicit. A formula for the
variation of τ1 under surgery along a Y -graph is given in [43]. Strictly similar arguments
give the following formula for τ2 and graph claspers of degree 2.

Lemma 3.2. Let H be a degree 2 graph clasper in a homology cylinder M with 4 leaves
f1, . . . , f4 which are oriented as shown below:

f4

f3f2

f1

Then we have

τ2 (MH)− τ2(M) = {(h1 ∧ h2)↔ (h3 ∧ h4)}
where h1, . . . , h4 ∈ H denote the homology classes of f1, . . . , f4 respectively.

By clasper calculus, we can always assume that a degree 2 graph clasper has four leaves.
In particular, this lemma implies that surgery along a looped graph clasper L of degree
2 does not modify τ2. Combining this with Lemma A.17 also gives the following.
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Lemma 3.3. Let Y be a Y -graph in a homology cylinder M with one special leaf and
two oriented leaves f, f ′ as shown below:

f f ′

Then we have

τ2 (MY )− τ2(M) =
{
(h ∧ h′)⊗ (h ∧ h′)

}
where h, h′ ∈ H denote the homology classes of f, f ′ respectively.

3.2. The Alexander polynomial and the Reidemeister–Turaev torsion. There
is a relative version of the Alexander polynomial for homology cylinders [60]. The
relative Alexander polynomial of an M ∈ IC is the order of the relative homology group
H1(M,∂−M ;Z[H]) whose coefficients are twisted by the ring homomorphism

Z[π1(M)] // // Z[H1(M)]
(m±,∗)−1

'
// Z[H].

This order is defined up to multiplication by a unit of the ring Z[H], i.e. an element of
the form ±h for some h ∈ H. We denote it by

∆(M,∂−M) := ordH1(M,∂−M ;Z[H]) ∈ Z[H]/±H.

Lemma 3.4. For all M ∈ IC, we have ∆(M,∂−M) 6= 0.

Proof. We have the following general fact, essentially proved in [34, Proposition 2.1].

Fact. Let (X,Y ) be a connected CW pair such that the inclusion Y ⊂ X
induces an isomorphism in homology. Then, for all injective ring homo-
morphism ϕ : Z[H1(X)] → F with values in a commutative field F, the
homology group H∗(X,Y ;F) with coefficients twisted by ϕ is trivial.

Thus, an application of the universal coefficient theorem gives

H1(M,∂−M ;Z[H])⊗Z[H] Q(Z[H]) ' H1

Ä
M,∂−M ;Q(Z[H])

ä
= 0

where Q(Z[H]) denotes the fraction field of the domain Z[H]. We deduce that the
Z[H]-module H1(M,∂−M ;Z[H]) is torsion. �

It has been shown by Milnor for link complements [47] and by Turaev for closed
manifolds [62] that the Alexander polynomial can be interpreted in dimension 3 as
a kind of Reidemeister torsion. The reader is referred to Turaev’s book [65] for an
introduction to the theory of Reidemeister torsions. The same interpretation holds for
the relative Alexander polynomial of homology cylinders.

Proposition 3.5. Let M ∈ IC and let (X,Y ) be a cell decomposition of (M,∂−M).
We denote by µ : Z[π1(X)] → Q(Z[H]) the ring map induced by the isomorphism
(m±,∗)

−1 : H1(X) ' H1(M) → H and we denote by τµ(X,Y ) ∈ Q(Z[H])/ ± H the
relative Reidemeister torsion with abelian coefficients given by µ. Then we have

τµ(X,Y ) = ∆(M,∂−M) ∈ Z[H]/±H.

This follows from [14, Lemma 3.6] for instance. The main argument is that M collapses
relatively to ∂−M onto a cell complex having only 1-cells and 2-cells in an equal number.
(This fact follows from the existence of a Heegaard splitting for M , as discussed in §2.1.)
Thus, the computations of τµ(X,Y ) and ∆(M,∂−M) reduces to a single determinant.
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Thanks to Proposition 3.5, one can use Turaev’s refinement of the Reidemeister tor-
sion [63] to fix the ambiguity in ±H in the definition of the relative Alexander polyno-
mial. Let M ∈ IC and let (X,Y ) be a cell decomposition of (M,∂−M). An Euler chain
in X relative to Y is a singular 1-chain c in X with boundary

∂c =
∑
σ

(−1)dim(σ) · (center of σ)

where the sum is indexed by the cells σ of X \ Y . Such chains exist since the relative
Euler characteristic of the pair (X,Y ) is zero. Two Euler chains c and c′ are homologous
if the 1-cycle c − c′ is null-homologous. An Euler structure on X relative to Y is a
homology class of Euler chains. The set

Eulc(X,Y )

of Euler structures on X relative to Y is an H1(X)-affine space. Turaev associates in
[63] to each θ ∈ Eulc(X,Y ) a representative

τµ(X,Y ; θ) ∈ Q(Z[H])

of the relative Reidemeister torsion τµ(X,Y ) in such a way that

(3.6) ∀h ∈ H ' H1(X), τµ
(
X,Y ; θ +

−→
h
)

= h · τµ(X,Y ; θ).

We call τµ(X,Y ; θ) the Reidemeister–Turaev torsion (or, in short, RT torsion) of the
CW pair (X,Y ) equipped with θ. The ambiguity in H is fixed by lifting an Euler chain
in the class θ to the maximal abelian cover of X, which gives a preferred lift for each
cell of X \ Y . The sign ambiguity is fixed thanks to a correcting multiplicative term: in
general, one has to choose an orientation of the R-vector space H∗(X,Y ;R) but, in the
situation of homology cylinders, this space is trivial. Observe also that, in this situation,
τµ(X,Y ; θ) belongs to Z[H] by Proposition 3.5.

The Euler structures that are defined in the previous paragraph are called combi-
natorial since they are defined for pairs of CW complexes (X,Y ). There is also a
geometric version of Euler structures which are defined in [63] for pairs of smooth mani-
folds (U, V ): the submanifold V is then assumed to be a union of connected components
of ∂U . Turaev’s correspondence between the two notions of Euler structures involves
smooth triangulations. If the manifold U is three-dimensional, Benedetti and Petronio
define in [4] a relative version of the Reidemeister–Turaev torsion for quite general sub-
manifolds V of ∂U . This invariant was rediscovered by Friedl, Juhász and Rasmussen
in the context of sutured Heegaard–Floer homology [14]. The correspondence between
combinatorial Euler structures and geometric Euler structures is proved in [4] using the
theory of branched standard spines and in [14] using Morse theory. In the sequel, we
adopt the latter viewpoint which is better suited to our purposes.

The constructions of [14] apply to any homology cylinder M over Σ in the following
way. In order to consider homology cylinders in the smooth category, we smooth the
corners of (Σ× I) and we denote the smooth trivial cylinder by (Σ× I)sc:

Σ× I ; (Σ× I)
sc

The inclusion (Σ × I)sc ⊂ (Σ × I) identifies the tangent bundle T (Σ × I)sc with the
restriction of TΣ×TI to (Σ×I)sc. We give the 3-manifold M a smooth structure and we
assume that its boundary is parametrized by a diffeomorphism m : ∂ (Σ× I)sc → ∂M .
This diffeomorphism induces an isomorphism of vector bundles

(3.7) R⊕m∗ : T (Σ× I)sc |∂(Σ×I)sc ' R⊕ T∂ (Σ× I)sc −→ R⊕ T∂M ' TM |∂M
between the tangent bundles restricted to the boundaries. We denote by t the coordinate
along I in (Σ×I) and by ∂

∂t the corresponding vector field, which is a non-singular section
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of TΣ × TI. The image by (3.7) of its restriction to (Σ × I)sc defines on ∂M a non-
singular vector field v0 of M which points outside M on ∂+M , points inside M on ∂−M
and is tangent to ∂M along the circle m(∂Σ× {0}): see Figure 3.1. An Euler structure
on M relative to ∂−M is an equivalence class of non-singular vectors fields v on M such
that v|∂M = v0. Here two such vector fields v, v′ are considered equivalent if there is an
open 3-ball B ⊂ int(M) such that v|M\B and v′|M\B are homotopic relatively to ∂M .
Obstruction theory tells us that the set of Euler structures on M relative to ∂−M

Eulg(M,∂−M)

is an H1(M)-affine space since we have H1(M) ' H2(M,∂M) by Poincaré duality. Let
(X,Y ) be a cell decomposition of (M,∂−M) arising from a handle decomposition of M
relative to ∂−M . Then, an H1(M)-equivariant correspondence between combinatorial
and geometric Euler structures

(3.8) Eulc(X,Y )
' // Eulg(M,∂−M)

is defined in [14, §3] by desingularizing a gradient-like vector field of a Morse function
that induces the given handle decomposition. This bijection is similar to the formulation
in the closed case of Turaev’s correspondence [63] in terms of Morse theory [27, 42].
Therefore, the relative RT torsion of M equipped with ξ ∈ Eulg(M,∂−M) is defined as

τ(M,∂−M ; ξ) := τµ(X,Y ; θ) ∈ Q(Z[H])

where θ ∈ Eulc(X,Y ) corresponds to ξ by the correspondence (3.8).

M

∂+M

∂−M

m ((∂Σ× I)sc)

v0

Figure 3.1. The non-singular vector field v0 of M defined on ∂M .

We shall need further constructions for relative Euler structures, which are already
available in the literature for closed oriented 3-manifolds. Thus an efficient way to extend
them to the case of homology cylinders is to “close” any M ∈ IC as follows. First of all,

we add a 2-handle D to the surface Σ to obtain a closed connected oriented surface ÙΣ of
genus g. Next we glue a 2-handle D× I along M to obtain a cobordism ıM between two

copies of ÙΣ. Finally we obtain a closed connected oriented 3-manifold M ] by identifying

the bottom surface of ıM with its top surface using the homeomorphism

∂−ıM ÙΣm−∪IdD

∼=
oo

m+∪IdD

∼=
// ∂+
ıM.

Observe that we have M ⊂M ] and there is an isomorphism

H1(M)⊕ Z '−→ H1(M ]), (h, x) 7−→ incl∗(h) + x ·
î
0× S1

ó
,

where the circle 0 × S1 denotes the co-core 0 × I of the 2-handle D × I with the two
ends identified.

A non-singular vector field v on M which coincides with v0 on ∂M can be extended
to a non-singular vector field v] on M ] by gluing it to the vector field ∂

∂t on D× I. Let

Eulg(M ]) be the space of geometric Euler structures on the closed 3-manifold M ], i.e.

the space of non-singular vector fields on M ] up to homotopy on M ] deprived of an
open 3-ball [63]. Then a closure map for Euler structures

(3.9) Eulg(M,∂−M) // Eulg(M ]), ξ
� // ξ]
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is defined by ξ] := [v]] if ξ = [v]. This map is affine over incl∗ : H1(M)→ H1(M ]).
Recall that a “Chern class” map c : Eulg(M ]) → H1(M ]) is defined in [63] for the

closed oriented 3-manifold M ]. The Chern class c([u]) ∈ H2(M ]) ' H1(M ]) of a
[u] ∈ Eulg(M ]) is the obstruction to find a non-singular vector field on M ] linearly
independent with u. In other words, it is defined as the Euler class (or, equivalently,
first Chern class) of a 2-dimensional oriented vector bundle:

c([u]) = e
Ä
TM ]/〈u〉

ä
∈ H2(M ]).

We define the relative Chern class map for the homology cylinder M by the diagram

Eulg(M,∂−M)

c

��

(3.9)
// Eulg(M ])

c

��

H1(M) H1(M)⊕ Z ' H1(M ])p
oooo

where the map p denotes the natural projection. The relative Chern class c(ξ) ∈
H1(M) ' H2(M,∂M) of a ξ ∈ Eulg(M,∂−M) can be described without making refer-

ence to M ] as follows. Let w be a non-singular vector field on the surface Σ, and let w′

be the image by the isomorphism (3.7) of the vector field w × I on (Σ × I)sc ⊂ Σ × I:
thus, w′ is a non-singular vector field of M defined on ∂M and linearly independent with
v0. Then, for any non-singular vector field v on M representing ξ, c(ξ) is the obstruction
to extend w′ to a non-singular vector field on M linearly independent with v:

(3.10) c(ξ) = e(TM/〈v〉, w′) ∈ H2(M,∂M).

Example 3.6. For the mapping cylinder c(h) of an element h of the Torelli group I, the
relative Chern class map also has the following description. Recall that the Chillingworth
homomorphism [9, 33]

t : I −→ H1(Σ)

maps h ∈ I to the obstruction t(h) to find a homotopy between a non-singular vector field
w on Σ and its image under h−1. Under the isomorphisms H1(Σ) ' H1(Σ, ∂Σ) ' H1(Σ),

the Chillingworth homomorphism takes values in H. Let
î
∂
∂t

ó
∈ Eulg(c(h), ∂−c(h)) be

the Euler structure represented by the “upward” vector field. Then we deduce from
(3.10) that c

Äî
∂
∂t

óä
is equal to −t(h) ∈ H1(Σ× I) ' H.

We now give some basic properties of the relative Chern class map.

Lemma 3.7. Let M ∈ IC. The relative Chern class map c : Eulg(M,∂−M)→ H1(M)
is affine over the multiplication by 2 map H1(M)→ H1(M), and its image is 2H1(M).

Proof. In the closed case, the Chern class map Eulg(M ]) → H1(M ]) is known to be
affine over the multiplication by 2 [63]. Moreover, the closure map (3.9) is affine over
incl∗ : H1(M)→ H1(M ]). We deduce that, for any ξ ∈ Eulg(M,∂−M) and h ∈ H1(M),

c
(
ξ +
−→
h
)

= pc

Å(
ξ +
−→
h
)]ã

= pc(ξ]) +
−−−−−−−→
2p incl∗(h) = c(ξ) + 2

−→
h

which proves the first statement.
To prove the second statement, it is enough to show that for any ξ ∈ Eulg(M,∂−M)

the mod 2 reduction of c(ξ) is trivial. Let w be a non-singular vector field on Σ, and
let w′ be the image of w× I by (3.7). We deduce from (3.10) that the mod 2 reduction
of c(ξ) is the (primary) obstruction to extend the parallelization (v0, w

′, v0 ∧ w′) of M
on ∂M to the whole of M . Since TM |∂M is isomorphic to R⊕ T∂M (using the normal
vector field), (v0, w

′, v0∧w′) defines a spin structure σ on ∂M , and the latter obstruction
is a relative second Stiefel–Whitney class:

c(ξ) mod 2 = w2(M,σ) ∈ H2(M,∂M ;Z2).
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Let (ρ1, . . . , ρ2g) be a system of simple oriented closed curves on the surface Σ which
generates H. Since M is a homology cylinder over Σ, we can find for every i = 1, . . . , 2g
a compact connected oriented surface Ri properly embedded in M such that ∂Ri =
m+(ρi)−m−(ρi). Then the quantity

〈w2(M,σ), [Ri]〉 ∈ Z2

is the obstruction to extend the spin structure σ|∂Ri to Ri and, so, it vanishes since the
latter restricts to the same spin structure of ρi on each connected component of ∂Ri.
(Here we are using the fact that the 1-dimensional spin cobordism group is Z2.) Since
[R1], . . . , [R2g] generate H2(M,∂M), we conclude that w2(M,σ) is trivial. �

The following is justified by Lemma 3.7.

Definition 3.8. Let M ∈ IC. The preferred relative Euler structure of M is the unique
ξ0 ∈ Eulg(M,∂−M) satisfying c(ξ0) = 0.

Thus the polynomial

τ(M,∂−M ; ξ0) ∈ Z[H] ⊂ Q(Z[H])

is a topological invariant of homology cylinders which, by Proposition 3.5, can be re-
garded as a normalized version of ∆(M,∂−M) ∈ Z[H]/±H.

Example 3.9. If M is the mapping cylinder of an h ∈ I, we deduce from Lemma 3.7

and Example 3.6 that ξ0 is
î
∂
∂t

ó
+
−−−−→
t(h)/2. So formula (3.6) gives

(3.11) τ
Ä
c(h), ∂−c(h); ξ0

ä
= t(h)

1/2 ∈ H ⊂ Z[H].

(Recall that H inside Z[H] is denoted multiplicatively.) This example shows that
τ(M,∂−M ; ξ0) does depend on the boundary parametrization m of M although the
class ∆(M,∂−M) only depends on m through the isomorphism m±,∗ : H → H1(M).

We shall now prove several properties for the relative RT torsion of homology cylin-
ders. A first property is its invariance under stabilization. Indeed, if Σs is a stabilization
of the surface Σ as shown in Figure 2.1 so that H embeds into Hs := H1(Σs), then the
following diagram is commutative:

(3.12) IC(Σ) //

τ( · ,∂− · ;ξ0)

��

IC(Σs)

τ( · ,∂− · ;ξ0)

��

Z[H] // Z[Hs].

Next, the relative RT torsion is a limit of infinitely many finite-type invariants. To
show this, we need beforehand to understand how Torelli surgeries “transport” Euler
structures.

Lemma 3.10. Let M ∈ IC, let S ⊂ int(M) be a compact connected oriented surface
with one boundary component and let s ∈ I(S). Then the Torelli surgery M ; Ms

induces a canonical bijection Ωs : Eulg(M,∂−M) → Eulg(Ms, ∂−Ms), which is affine
over the isomorphism Φs defined at (2.1) and which fits into the following commutative
diagram:

Eulg(M,∂−M)

c

��

Ωs

'
// Eulg(Ms, ∂−Ms)

c

��

H1(M)
'

Φs
// H1(Ms).
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Proof. We know from [42], which deals with the closed case, that the Torelli surgery
M ] ;Ms

] induces a canonical bijection

Ωs : Eulg(M ])
'−→ Eulg

Ä
Ms

]
ä
.

(The notion of “Torelli surgery” is defined in [42] along the boundary of an embedded
handlebody instead of an embedded surface S with one boundary component. But the
two notions are equivalent since a regular neighborhood of S is a handlebody.) The
Euler structure Ωs(ρ) associated to a ρ ∈ Eulg(M ]) can be described as follows. Let

u ∈ ρ be a non-singular vector field on M ] which is normal to S and is positive with
respect to S. Then there is a regular neigborhood S× [−1, 1] of S in int(M) ⊂M ] such
that u is the “upward” vector field ∂

∂t on it. Provided the smooth structure on Ms
] is

appropriately chosen with respect to that of M ], there is a unique vector field us on Ms
]

which coincides with u on M ] \ int(S × [−1, 1]) and with ∂
∂t on c(s). Then, [42, Lemma

3.5] tells us that

(3.13) Ωs(ρ) = [us]−
−−−−−−−−→
incl∗(t(s)/2)

where t : I(S)→ H1(S) ' H1(S, ∂S) ' H1(S) is the Chillingworth homomorphism. In
particular, Ωs(ρ) is obtained by modifying the vector field us by some “Reeb turbulen-
tization” [63] which is supported in a neighborhood of S. This fact implies that, for all
ξ ∈ Eulg(M), Ωs(ξ

]) belongs to the image of Eulg(Ms). So we can define the map Ωs in
the case of homology cylinders by the following commutative diagram:

Eulg(M,∂−M) // //

∃!Ωs
��
�
�
�

Eulg(M ])

' Ωs
��

Eulg(Ms, ∂−Ms) // // Eulg(Ms
])

In the closed case, the map Ωs is affine over the Mayer–Vietoris isomorphism Φs and it
is compatible with the Chern class map [42]. We easily deduce from the definitions that
the map Ωs has the same properties in the case of homology cylinders. �

In the sequel we denote by I the augmentation ideal of Z[H].

Theorem 3.11. Let d ≥ 1. Then the d-th I-adic reduction of the relative Reidemeister–
Turaev torsion of homology cylinders

τ(M,∂−M ; ξ0) ∈ Z[H]/Id

is a finite-type invariant of degree at most d− 1.

Sketch of the proof. The analogous statement for closed oriented 3-manifoldsN has been
proved in [42] using Heegaard splittings. To understand how the RT torsion changes
τ(N, ρ) ; τ(Ns,Ωs(ρ)) when a Torelli surgery N ; Ns is performed, one needs two
technical ingredients:

(i) a description following [27] of Turaev’s correspondence between combinatorial
and geometric Euler structures in terms of Morse theory [42, §2.3],

(ii) an explicit formula following [64] which computes the RT torsion of N from a
Heegaard splitting by means of Fox’s free derivatives [42, §4.1].

This proof can be adapted in a straightforward way to the case of homology cylinders
using the notion of Heegaard splitting defined in §2.1 and some technical results from
[14]. To be more specific, the analogue of (i) can be found in [14, §3.5] and the analogue
of (ii) is done in [14, §4]. The final observation is that a Torelli surgery M ; Ms

between homology cylinders preserves the preferred Euler structure ξ0, as follows from
Lemma 3.10. �
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We shall now identify the “leading term” of the relative RT torsion with respect
to the I-adic filtration of Z[H]. According to Johnson [33], the Chillingworth homo-
morphism can be recovered from the first Johnson homomorphism by the formula
t(h) = cont ◦ τ1(h), for all h ∈ I, where “cont” is the contraction homomorphism
Λ3H → H defined by

cont(a ∧ b ∧ c) := 2 · (ω(a, b)c+ ω(b, c)a+ ω(c, a)b) .

Thus the map t can be extended to a monoid homomorphism

t : IC −→ H

simply by setting t := cont ◦ τ1.

Lemma 3.12. For all M ∈ IC, we have τ(M,∂−M ; ξ0) = t(M)1/2 mod I2.

Proof. The relative RT torsion is invariant by stabilization in the sense of (3.12). There-
fore we can assume that g ≥ 3, and M is then Y2-equivalent to a mapping cylinder c(h)
for some h ∈ I [43]. By Theorem 3.11 and Lemma 2.3, we have

τ(M,∂−M ; ξ0) = τ(c(h), ∂−c(h); ξ0) mod I2.

We conclude thanks to (3.11) and the fact that τ1 is invariant under Y2-equivalence. �

By Lemma 3.12, we can associate to any M ∈ IC the symmetric tensor

(3.14) α(M) :=
¶
τ(M,∂−M ; ξ0)− t(M)

1/2
©
∈ I

2

I3
' S2H.

(Here S2H is identified with I2/I3 in the usual way, namely h ·h′ 7→ {(h− 1)(h′ − 1)}.)
We shall refer to α(M) as the quadratic part of the relative RT torsion. It has the
following properties.

Proposition 3.13. The map α : IC → S2H is an additive finite-type invariant of degree
2, which satisfies

(3.15) ∀f ∈ I, α(c(f)) = 0.

Next, if G is a looped graph clasper of degree 2 in a homology cylinder M whose leaves
f and f ′ are oriented as follows

f f ′

and have homology classes h ∈ H and h′ ∈ H respectively, then we have

α(MG)− α(M) = −2 · hh′.
Finally, if Y is a Y -graph in a homology cylinder M with two special leaves and one
arbitrary leaf f which is oriented in an arbitrary way

f

and has homology class h ∈ H, then we have

α(MY )− α(M) = h2.

In order to prove this proposition, we shall need two other properties of the relative
RT torsion of homology cylinders.

Lemma 3.14. For all M,M ′ ∈ IC, we have

τ
Ä
M ◦M ′, ∂−(M ◦M ′); ξ0

ä
= τ(M,∂−M ; ξ0) · τ(M ′, ∂−M

′; ξ0) ∈ Z[H].
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Lemma 3.15. Let G be a looped graph clasper of degree d ≥ 1 in a homology cylinder
M , whose leaves f1, . . . , fd and loop ` of edges are oriented as shown below:

ε1 ε2 εd

f1 f2 fd

`

where

0

1

=

=
(a half-twist)

We denote by h1, . . . , hd ∈ H and b ∈ H the homology classes of f1, . . . , fd and `,
respectively, and we set ε := ε1 + · · ·+ εd ∈ Z2. Then we have

τ(MG, ∂−MG; ξ0) = Pd,ε(b
−1, h1, . . . , hd) · Pd,ε(b, h−1

1 , . . . , h−1
d ) · τ(M,∂−M ; ξ0)

where we denote Pd,ε(Y,X1, . . . , Xd) := Y + (−1)ε+1
d∏
i=1

(1−Xi) ∈ Z[Y,X1, . . . , Xd].

The proofs are as follows.

Proof of Lemma 3.14. The identity in Q(Z[H])/±H easily follows from the multiplica-
tivity of the Reidemeister torsion of acyclic chain complexes with respect to direct sums
[65]. Thus there are some unique ε ∈ {+1,−1} and h ∈ H such that

τ
Ä
M ◦M ′, ∂−(M ◦M ′); ξ0

ä
= εh · τ(M,∂−M ; ξ0) · τ(M ′, ∂−M

′; ξ0).

Setting x(M) := τ(M,∂−M ; ξ0) − t(M)1/2, which belongs to I2 by Lemma 3.12, this
identity reads

(3.16) t(M ◦M ′)1/2 + x(M ◦M ′) = εh ·
Ä
t(M)

1/2 + x(M)
ä
·
Ä
t(M ′)

1/2 + x(M ′)
ä
.

By reducing (3.16) modulo I, we obtain ε = 1. By reducing (3.16) modulo I2, we get¶
t(M ◦M ′)1/2 − 1

©
=
¶
h · t(M)

1/2 · t(M ′)1/2 − 1
©
∈ I/I2 ' H

which implies h = 1 ∈ H (written multiplicatively). �

Proof of Lemma 3.15. Analogues of this formula have already been proved in two con-
texts: for the Alexander polynomial of knots in [16] and for the RT torsion of closed
3-manifolds with Euler structure in [40]. (It should be observed that, in both situa-
tions, the orientation conventions for claspers differ from ours.) Since in the situation
of homology cylinders, the Reidemeister torsion can be interpreted as an Alexander
polynomial (Proposition 3.5), the proof given by Garoufalidis and Levine in [16] can be
adapted in a straightforward way to obtain that
(3.17)
τ(MG, ∂−MG; ξ0) = η · k · Pd,ε(b−1, h1, . . . , hd) · Pd,ε(b, h−1

1 , . . . , h−1
d ) · τ(M,∂−M ; ξ0)

where k ∈ H and η = ±1 are unknown. (We leave the details of the computations to
the interested reader.) To fix the indeterminacy in ±H, it is enough to reduce (3.17)
modulo I2. We deduce from Lemma 3.12 that

t(MG)
1/2 = ηk · t(M)

1/2 ∈ Z[H]/I2.

We conclude that η = +1 and k = 1 ∈ H (written multiplicatively). �

Proof of Proposition 3.13. Assertion (3.15) follows from (3.11). To show the additivity
of α, consider some M,M ′ ∈ IC. We abbreviate

x := τ(M,∂−M ; ξ0)− t(M)
1/2 and x′ := τ(M ′, ∂−M

′; ξ0)− t(M ′)1/2.



21

By Proposition 3.14, τ
Ä
M ◦M ′, ∂−(M ◦M ′); ξ0

ä
is equal to

t(M)
1/2 · t(M ′)1/2︸ ︷︷ ︸

=t(M◦M ′)1/2

+(x+ x′) +
Ä
t(M)

1/2 − 1
ä
x′ +

Ä
t(M ′)

1/2 − 1
ä
x+ xx′︸ ︷︷ ︸

∈I3

and we deduce that α(M ◦M ′) = α(M) + α(M ′).
Thanks to Theorem 3.11, showing that α is a finite-type invariant of degree ≤ 2 is

equivalent to proving that ι ◦ t has the same property, where ι : H → Z[H]/I3 is the
canonical map. Let M ∈ IC and let S0 t S1 t S2 be three pairwise-disjoint surfaces in
int(M), together with some elements s0 ∈ I(S0), s1 ∈ I(S1), s2 ∈ I(S2). For i = 0, 1, 2
we also set ti := t (Msi) − t(M) ∈ H (written additively). For each P ⊂ {0, 1, 2}, let
MP be the result of the Torelli surgeries along the surfaces Sp for which p ∈ P . Since
τ1 is a finite-type invariant of degree 1, t (MP ) − t(M) is the sum of the tp for which
p ∈ P . Therefore the alternate sum in Z[H]∑
P⊂{0,1,2}

(−1)|P |t (MP ) = t(M)
∑

P⊂{0,1,2}
(−1)|P |t (MP ) t(M)−1 = t(M)

∑
P⊂{0,1,2}

(−1)|P |
∏
p∈P

tp

is equal to t(M) · (1 − t0)(1 − t1)(1 − t2) ∈ I3. This shows that ι ◦ t, and consequently
α, are finite-type invariants of degree at most 2.

We now prove the surgery formulas. In the case of the looped graph clasper G of
degree 2, we deduce from Lemma 3.15 that

τ(MG, ∂−MG; ξ0)

=
Ä
1− (1− h)(1− h′) · b− b−1 · (1− h−1)(1− h′−1)

ä
· τ(M,∂−M ; ξ0) mod I3

= τ(M,∂−M ; ξ0)− (1− h)(1− h′) · b− b−1 · (1− h−1)(1− h′−1) mod I3

= τ(M,∂−M ; ξ0)− (h− 1)(h′ − 1)− (1− h−1)(1− h′−1) mod I3.

Since we have t(M) = t(MG), we conclude that α(MG) = α(M)− 2hh′. (It also follows
that the degree of the finite-type invariant α is precisely 2.) The case of the Y -graph
with two special leaves is deduced from Corollary A.18 and the fact that α is invariant
under Y3-equivalence (by Lemma 2.3). �

3.3. The Casson invariant. One can produce from the Casson invariant of homology
3-spheres an invariant of homology cylinders over Σ. For this it is necessary to choose
an embedding of the surface Σ in S3 as follows. Let Fg ⊂ S3 be the surface obtained
from the genus g Heegaard surface of S3 by removing a small open disk. We fix an
orientation on Fg: the handlebody of the genus g Heegaard splitting that induces this
orientation on Fg is called lower while the other one is called upper. An embedding
j : Σ → S3 is called a Heegaard embedding if its image is Fg and if j : Σ → Fg is
orientation-preserving.

Let M be a homology cylinder over Σ. Denote by S3(M, j) the homology 3-sphere
obtained by “cutting” S3 along j(Σ) = Fg and by “inserting” M at this place: more
precisely we define

(3.18) S3(M, j) :=
Ä
S3 \ (j(Σ)× [−1, 1])

ä
∪j′◦m−1 M

where j(Σ) × [−1, 1] denotes a closed regular neighborhood of j(Σ) in S3 and j′ is the
restriction to the boundary of the homeomorphism j× Id : Σ× [−1, 1]→ j(Σ)× [−1, 1].
Evaluating the Casson invariant λ on this homology 3-sphere yields a map

λj : IC −→ Z, M 7−→ λ
Ä
S3(M, j)

ä
which strongly depends on the embedding j. We sometimes abbreviate λ := λj and the
dependence on j is discussed in §7.

It has been proved by Ohtsuki that the Casson invariant of homology 3-spheres is a
finite-type invariant [56]. More generally, the “sum formulas” of Morita [53] or Lescop
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[36] for the Casson invariant imply that λj : IC → Z is a finite-type invariant of degree
2. The same formulas show that λj : IC → Z is not additive: for any M,M ′ ∈ IC, we
actually have

(3.19) λj(M ◦M ′) = λj(M) + λj(M
′) + 2 · τ1(M) ?j τ1(M ′)

where ?j : Λ3H × Λ3H → Z is a certain non-trivial bilinear pairing whose definition
depends on j [53, 36, 8].

Finally, let us observe that the function λj is preserved by stabilization. More pre-
cisely, if the surface Σ is stabilized to a surface Σs of genus gs as shown in Figure 2.1
and if the Heegaard embedding js : Σs → Fgs extends j : Σ → Fg, then we have
λjs(M

s) = λj(M) for all M ∈ IC.

3.4. The Birman–Craggs homomorphism. The Birman–Craggs homomorphism is
a representation of the Torelli group derived from the Rochlin invariant of spin closed 3-
manifolds [6, 29]. This representation extends in a direct way to the monoid of homology
cylinders [37, 43].

To briefly recall its definition, we need the set Spin(Σ) of spin structures on Σ, which
is an affine space over the Z2-vector space H1(Σ;Z2). As shown in [30], the space of
spin structures on Σ can be identified with the space¶

H ⊗ Z2
q−→ Z2 : ∀x, y ∈ H ⊗ Z2, q(x+ y)− q(x)− q(y) = ω(x, y) mod 2

©
of quadratic forms whose polar form is the intersection pairing mod 2, and this identi-
fication will be tacit in the sequel. We shall denote by

B := Map(Spin(Σ),Z2)

the space of boolean functions on Spin(Σ). For every n ≥ 0, let B≤n denote the subspace
of B consisting of polynomial functions of degree at most n, i.e. sums of products of
n affine functions. In particular, B≤1 is the space of affine functions and includes the
following:

(3.20)

{
Spin(Σ)

1−→ Z2

q 7−→ 1

{
Spin(Σ)

h−→ Z2

q 7−→ q(h)
where h ∈ H.

The n-th derivative of a boolean function f : Spin(Σ) → Z2 at σ ∈ Spin(Σ) is the map
dnσ f : H1(Σ;Z2)n → Z2 defined by

(3.21) dnσ f(y1, . . . , yn) :=
∑

P⊂{1,...,n}
(−1)|P | · f (σ +−→yP )

where yP is the sum of the yp’s for which p ∈ P . As a general fact, a map f is polynomial

of degree ≤ n if and only if dn+1
σ f vanishes at some point σ and, in this case, dnσ f does

not depend on σ and is multilinear. Since the ground field is here Z2, the signs do not
count in (3.21) and the n-th derivative dnσ f of a function f vanishes when two arguments
are repeated. Thus, we have a canonical isomorphism

(3.22) dn : B≤n/B≤n−1
'−→ Hom

Ä
ΛnH1(Σ;Z2),Z2

ä
' ΛnH(2)

where H(2) := H1(Σ;Z2) = H ⊗ Z2 is identified with Hom(H1(Σ;Z2),Z2).

Now, let j : Σ ↪→ S3 be any embedding. Pulling back the (unique) spin structure σ0 of
S3 by j gives an element j∗σ0 ∈ Spin(Σ), and any element of Spin(Σ) can be realized in
this way. For a homology cylinder M over Σ, denote by S3(M, j) the homology 3-sphere
defined at (3.18). Evaluating Rochlin’s µ invariant on this homology sphere yields a
monoid homomorphism IC → Z2 which only depends on j∗σ0 ∈ Spin(Σ). By making
the spin structure vary on Σ, ones gets the Birman–Craggs homomorphism

β : IC −→ B≤3, M 7−→
Ä
j∗σ0 7→ µ

Ä
S3(M, j)

ää
.
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The map β is an additive finite-type invariant of degree 1, which is preserved by stabi-
lization of the surface Σ. Let us recall how β changes under surgery along a Y -graph.

Lemma 3.16. Let Y be a Y -graph in a homology cylinder M , whose leaves are ordered
and oriented in an arbitrary way. We denote by h1, h2, h3 ∈ H their homology classes
and by f1, f2, f3 ∈ Z their framing numbers in M (as defined in Appendix B). Then,
using the notation (3.20), we have

β (MY )− β(M) =
3∏
i=1

Ä
hi + fi · 1

ä
∈ B≤3.

Proof. This formula is essentially contained in [43]. Let q ∈ Spin(Σ) (which we think of
as a quadratic form H(2) → Z2 with polar form ω ⊗ Z2) and let σ be the unique spin
structure on M whose pull-back by m+ : Σ→M (or, equivalently, by m−) gives q. We
denote by FM the bundle of oriented frames of M with fiber GL+(3;R), and we think
of σ as an element of H1(FM ;Z2) which is not zero on the fiber. We deduce from [43,
Lemma 3.14] that

〈β (MY )− β(M), q〉 =
3∏
i=1

〈σ, tLi〉 ∈ Z2

where L1, L2, L3 denote the leaves of Y and, for any framed oriented knot K in M ,
tK ∈ H1(FM) denotes the homology class of the oriented curve in FM obtained by
lifting K with an extra (+1)-twist to FM . Thus it is enough to check the following.

Claim 3.17. For any oriented framed knot K in M , we have q([K]) = 〈σ, tK〉+ Fr(K)
where [K] ∈ H denotes the homology class of K and Fr(K) ∈ Z its framing number.

We set q′(K) := 〈σ, tK〉 + Fr(K) ∈ Z2 and we first check that q′(K) only depends on
the homology class of K. For this, let K1 and K2 be two oriented framed knots such
that [K1] = [K2] ∈ H. Then we can find a compact oriented surface S ⊂ M such that
∂S = K1 t (−K2) and K1 is 0-framed with respect to this surface S. Let n be the
framing of K2 with respect to S, and let K ′2 be the oriented framed knot obtained from
K2 by an extra (−n)-twist so that K ′2 is 0-framed with respect to S. It follows from [43,
Lemma 2.7] that tK1 = tK′2 and, using Lemma B.4, we obtain that Fr(K1) = Fr(K ′2).
We deduce that

〈σ, tK1〉+ Fr(K1) = 〈σ, tK′2〉+ Fr(K ′2) = 〈σ, tK2〉+ n+ Fr(K ′2) = 〈σ, tK2〉+ Fr(K2) ∈ Z2.

Thus, we get a map q′ : H → Z2. Moreover this map is quadratic with polar form ω⊗Z2

since, for any oriented framed knots K and L in M , we have

q′([K] + [L]) = q′([K]L])

= 〈σ, tK + tL〉+ Fr(K) + Fr(L) + 2 Lk(K,L)

= q′([K]) + q′([L]) + ω([K], [L]).

(Here we have used [43, Lemma 2.7] and Appendix B again.) In particular, it follows
that q′ factorizes to a quadratic form q′ : H(2) → Z2. To conclude that q = q′, it is
enough to check that q([α]) = q′([α]) for any oriented simple closed curve α on Σ. Let
α+ be the oriented framed knot obtained by pushing the curve m+(α), framed along
m+(Σ), in the interior of M . The way a spin structure on Σ is identified with a quadratic
form in [30] implies that q([α]) = 〈σ, tα+〉 and, since we have Fr(α+) = 0 in this case,
we conclude that q([α]) = q′([α]). �
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An important property of β is that, for any M ∈ IC, the third derivative of the cubic
function β(M) is the mod 2 reduction of τ1(M):

(3.23) IC
β

//

τ1

��

B≤3
d3

// Λ3H(2)

Λ3H
mod 2

// // Λ3H(2)

This relation is due to Johnson [33] (in the case of the Torelli group), and it can be
proved by comparing how β and τ1 change under surgery along a Y -graph [43]. The
following lemmas give the next derivatives of β.

Lemma 3.18. The following diagram is commutative:

KC

τ2
��

β
// B≤2

d2
// Λ2H(2)

(Λ2H⊗Λ2H)
S2

Λ4H L
// // Λ2H

2·Λ2H

'

OO

Here KC = C[2] denotes the second term of the Johnson filtration and L is the homo-
morphism appearing in the short exact sequence (3.2).

Proof. It is a consequence of (3.23) that the restriction of β to KC takes its values in
B≤2. Now let M ∈ KC. Using Lemma 3.16, we can find some Y -graphs with one special
leaf G1, . . . , Gm in (Σ× I) such that

β(M) =
m∑
i=1

β ((Σ× I)Gi) ∈ B≤2.

Since the Y2-equivalence is classified by the pair (τ1, β) [43], we deduce that

M
Y2∼

m∏
i=1

(Σ× I)Gi .

Therefore, by clasper calculus, we can find graph claspers H1, . . . ,Hn of degree 2 in
(Σ× I) such that

M
Y3∼

n∏
j=1

(Σ× I)Hj ◦
m∏
i=1

(Σ× I)Gi .

Since τ2 is invariant under Y3-equivalence, we have

(3.24) τ2(M) =
n∑
j=1

τ2

Ä
(Σ× I)Hj

ä
+

m∑
i=1

τ2 ((Σ× I)Gi) .

We deduce from Lemma 3.2 and Lemma 3.3 that

Lτ2(M) = 0 +
m∑
i=1

li ∧ ri ∈ Λ2H(2)

where li, ri ∈ H(2) denote the mod 2 homology classes of the non-special leaves of Gi.
We conclude thanks to Lemma 3.16. �

Remark 3.19. The fact that the second Johnson homomorphism τ2 is related to the
Birman–Craggs homomorphism β has already been observed by Yokomizo for the John-
son subgroup of the Torelli group [66].
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Lemma 3.20. The following diagram is commutative:

C[3]

α

��

β
// B≤1

d1
// H(2)

��

s

��

S2H
mod 2

// // S2H(2)

Here s is the square map defined by x 7→ x2.

Proof. It is a consequence of Lemma 3.18 that the restriction of β to C[3] takes its values
in B≤1. Let now M ∈ C[3]. Using the same arguments as in the proof of Lemma 3.18,
we can find some some Y -graphs G1, . . . , Gm in (Σ × I) with two special leaves and
graph claspers H1, . . . ,Hn of degree 2 in (Σ× I) such that

M
Y3∼

n∏
j=1

(Σ× I)Hj ◦
m∏
i=1

(Σ× I)Gi .

Since we have τ2(M) = 0 by assumption and τ2 ((Σ× I)Gi) = 0 by Lemma 3.3, we

deduce that
∑
j τ2

Ä
(Σ× I)Hj

ä
= 0. Then a more delicate use of clasper calculus shows

that we can assume each graph clasper Hj to be looped. (This will be proved in Lemma
4.2 below.) We deduce from Proposition 3.13 that

α(M) =
n∑
j=1

α
Ä
(Σ× I)Hj

ä
︸ ︷︷ ︸

∈2·S2H

+
m∑
i=1

α ((Σ× I)Gi)︸ ︷︷ ︸
=g2i

where gi ∈ H is the homology class of the non-special leaf of Gi (which is oriented in an
arbitrary way). Therefore, we have

α(M) mod 2 =
m∑
i=1

g2
i ∈ S2H(2).

Again, we conclude thanks to Lemma 3.16. �

Remark 3.21. Since α is trivial on the Torelli group, we deduce from the previous
lemmas that the function β(f) : Spin(Σ) → Z2 is constant for any f ∈ M[3]. This
phenomenon has already been observed by Johnson in [31, p.178].

The next statement is deduced from the previous lemmas, and it will be used in the
proof of Theorem A.

Lemma 3.22. If two homology cylinders M and M ′ over Σ have the same invariants
ρ3, α and λj (for some Heegaard embedding j of Σ in S3), then the Birman–Craggs
homomorphism β does not distinguish M from M ′.

Proof. Since the quotient monoid IC/Y3 is a group according to Goussarov and Habiro
[18, 22], there exists an N ∈ IC such that M ◦ N is Y3-equivalent to M ′. The fact
that ρ3(M) = ρ3(M ′) implies that ρ3(N) = 1, so that N belongs to C[3]. By (3.23)
and Lemma 3.18 we obtain that β(N) ∈ B≤1. Next, the fact that α(M) = α(M ′)
implies that α(N) = 0, and we deduce from Lemma 3.20 that the boolean function
β(N) : Spin(Σ)→ Z2 is constant. Finally, M and M ′ having the same Casson invariant
λj , we deduce from formula (3.19) that λj(N) = 0. Therefore, we have

β(N)(j∗σ0) = µ
Ä
S3(N, j)

ä
= λ
Ä
S3(N, j)

ä
mod 2 = λj(N) mod 2 = 0

which shows that β(M ′)− β(M) = β(N) is the trivial map. �
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4. Some diagrammatic invariants of homology cylinders

In this section, we briefly review the LMO homomorphism (which is a diagrammatic
representation of the monoid IC introduced in [8, 23]) and its connection with clasper
surgery. We recall how the invariants τ1, τ2 and λ introduced in §3 can be extracted
from the LMO homomorphism [8], and we give a similar result for the quadratic part α
of the relative RT torsion.

4.1. Jacobi diagrams. We start by defining the diagrammatic spaces that we shall
need. A Jacobi diagram is a finite graph whose vertices have valency 1 or 3: univalent
vertices are called external vertices, while trivalent vertices are called internal vertices
and are assumed to be oriented. (An orientation of a vertex is a cyclic ordering of its
incident half-edges.) The internal degree (or simply degree) of a Jacobi diagram is its
number of internal vertices, and the loop degree is its first Betti number. We call a
connected Jacobi diagram of internal degree 0 a strut, and we call a connected Jacobi
diagram of internal degree 1 and loop degree 1 a lasso. A Jacobi diagram is colored by
a set S if a map from the set of its external vertices to S is specified. As usual [3] for
figures, we use dashed lines to depict Jacobi diagrams, and we take the cyclic ordering
at a trivalent vertex given by the counter-clockwise orientation: see Figure 4.1 for some
examples.

Figure 4.1. Some examples of Jacobi diagrams: the strut, the lasso,
the Y graph, the H graph, the Φ graph and the Θ graph.

As in the previous sections, we denote H := H1(Σ) and HQ := H ⊗ Q. We consider
the following abelian group:

A(H) :=

Z ·
®

Jacobi diagrams without strut component
and with external vertices colored by H

´
AS, IHX, loop, multilinearity

.

The “AS” and “IHX” relations are diagrammatic analogues of the antisymmetry and
Jacobi identities in Lie algebras:

AS IHX

= − − + = 0

The “loop” relation says that a Jacobi diagram with a looped edge (e.g. a lasso) is trivial,
and follows from the IHX relation in internal degree ≥ 2. The “multilinearity” relation
states that a Jacobi diagram D having one external vertex v colored by n1 · h1 + n2 · h2

(with n1, n2 ∈ Z and h1, h2 ∈ H) is equivalent to the linear combination n1 ·D1 +n2 ·D2

where Di is the Jacobi diagram D with the vertex v colored by hi. The abelian group
A(H) is graded by the internal degree:

A(H) =
∞⊕
i=0

Ai(H),

the degree 0 part being spanned by the empty diagram ∅. We denote by Ac(H) the
subgroup of A(H) spanned by connected Jacobi diagrams. Its internal degree i part
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Aci (H) is in turn graded by the loop degree:

Aci (H) =
di⊕
l=0

Aci,l(H),

where di = (i+ 2)/2 if i is even, and di = (i− 1)/2 if i is odd. The projection onto the
loop-degree l part of Aci (H) is denoted by

pi,l : Aci (H) −→ Aci,l(H).

There is also a version of A(H) with rational coefficients: this Q-vector space is denoted
by A(HQ) and is canonically isomorphic to A(H)⊗Q.

The space A(H) is well suited for computations which, for instance, involve the rep-
resentation theory of the symplectic group Sp(H). However, from a topological point
of view, the following variant of A(H), which has been introduced by Habiro in [22], is
more convenient to use with clasper calculus: see §4.2 in this connection.

A<(H) :=

Z ·
®

Jacobi diagrams without strut component and
with external vertices colored by H and totally ordered

´
AS, IHX, loop, multilinearity, STU-like

.

The AS, IHX, loop and multilinearity relations are as before, while the “STU-like”
relation is defined as follows:

= ω(x, y)·

x y y x

−

< <· · · < · · · << · · · < · · ·

(Recall that ω : H ×H → Z denotes the intersection pairing.) Again, there is a rational
version of A<(H), which is denoted by A<(HQ) and which is canonically isomorphic to
A(H)⊗Q. With rational coefficients, there is an isomorphism

χ : A(HQ)
'−→ A<(HQ)

defined, for all Jacobi diagram D ∈ A(HQ) with e external vertices, by

χ(D) :=
1

e!
· (sum of all ways of ordering the e external vertices of D)

(See [23, Proposition 3.1].) Besides there is another version of the abelian group A<(H),
which is denoted by A<(−H) and is defined as A<(H), except that one uses the sym-
plectic form −ω in the STU-like relation instead of ω. These two spaces are canonically
isomorphic, via the map

s : A<(−H)
'−→ A<(H)

defined by s(D) := (−1)w(D)D for any Jacobi diagram D, where w(D) denotes the Euler
characteristic of D modulo 2.

Finally, we shall need a third space of Jacobi diagrams. We denote by L± the abelian
group freely generated by the set

{1+, . . . , g+} ∪ {1−, . . . , g−},

which consists of two copies of the finite set {1, . . . , g}, labeled by “+” and “−” respec-
tively. Then, we consider the abelian group

A(L±) :=

Z ·
®

Jacobi diagrams without strut component
and with external vertices colored by L±

´
AS, IHX, loop, multilinearity
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α1

αg

β1 βg

Figure 4.2. The surface Σ and a system of meridians and parallels (α, β).

and its version A(L±Q) with rational coefficients. We also denote by Ac(L±) the subgroup

of A(L±) spanned by connected Jacobi diagrams. There is a projection of Aci (L±) onto
its loop-degree l part which we denote by

pi,l : Aci (L±) −→ Aci,l(L±).

Of course, if we choose a system of meridians and parallels (αi, βi)
g
i=1 on the surface Σ

as depicted in Figure 4.2, then we have an “obvious” isomorphism between A(L±) and
A(H) which is induced by the group isomorphism

(4.1) L±
'−→ H, i− 7−→ [αi], j

+ 7−→ [βj ].

Observe that the subgroup generated by {1−, . . . , g−} (respectively {1+, . . . , g+}) then
corresponds to the Lagrangian subgroup 〈α1, . . . , αg〉 of H (respectively 〈β1, . . . , βg〉).
But there is also a “non-obvious” isomorphism between A(L±Q) and A(HQ), namely the
map κ defined by the following composition:

(4.2) A(L±Q)
ϕ

'
//

κ

44U W Y Z \ ] _ a b d f g i
A<(−HQ)

s

'
// A<(HQ)

χ−1

'
// A(HQ)

Here the isomorphism ϕ is defined by declaring that “each i−-colored vertex should
be lower than any i+-colored vertex” and by changing the colors of external vertices
according to (4.1). (See [8, Lemma 8.4].) Note that κ is explicitly given by the formula
(4.3)

κ(D) = (−1)w(D) ·
Ç

sum of all ways of (×1/2)-gluing some i−-colored
vertices of D with some of its i+-colored vertices

∣∣∣∣∣ j+ 7→ [βj ]
j− 7→ [αj ]

å
for any Jacobi diagram D, where w(D) denotes the Euler characteristic of D modulo
2, and where a “(×1/2)-gluing” means a gluing together with a multiplication by 1/2.
The reasons to be interested in this more sophisticated isomorphism κ will be apparent
in the next subsection.

We conclude this review of diagrammatic spaces by the following technical fact.

Lemma 4.1. The abelian groups A2(H) and A<2 (H) are torsion-free.

Proof. The isomorphism ϕ, whose definition is recalled in the previous paragraph,
exists with integral coefficients. (Indeed, the proof given in [8, Lemma 8.4] works
with coefficients in Z as well.) Therefore, the abelian group A<(H) is isomorphic to
A(L±) ' A(H), so that it is enough to prove the lemma for A2(H).

The abelian group A2(H) is the direct sum of Ac2(H) and S2Ac1(H) ' S2Λ3H. To
see that Ac2(H) has no torsion, we use the loop degree:

Ac2(H) = Ac2,0(H)⊕Ac2,1(H)⊕Ac2,2(H).
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By the multilinearity relation, we have

Ac2,1(H) =

≠
h h′

∣∣∣∣h, h′ ∈ H∑ ' S2H and Ac2,2(H) =
¨ ∂

' Z.

Thus it remains to prove that the group Ac2,0(H) is torsion-free. Note that we have

an isomorphism Ac2,0(H) ' S2Λ2H
Λ4H

defined by
a b c d

7−→ ((a ∧ b)↔ (c ∧ d)). Now,

recall from the proof of Proposition 3.1 the homomorphism

Ac2,0(H) ' S2Λ2H

Λ4H

η′−→ D′2(H)

defined by

a b c d
7−→ a⊗ [b, [c, d]] + b⊗ [[c, d], a] + c⊗ [d, [a, b]] + d⊗ [[a, b], c].

As shown by Levine [38], this map is an isomorphism. Since D′2(H) is a subgroup of
D2(H) which has no torsion, we deduce that Ac2,0(H) is torsion-free. �

4.2. The surgery map. For each integer k ≥ 2, Habiro has defined in [22] a surjective
homomorphism

ψk : A<,ck (H) −→ YkIC
Yk+1

,

which sends each connected Jacobi diagram D ∈ A<,ck (H) to the homology cylinder
obtained from (Σ× I) by surgery along a graph clasper C(D) of degree k with the same
shape as D. This “topological realization” C(D) of the diagram D is defined in the
following way:

(1) Thicken D to a compact oriented surface using the vertex-orientation of D, so
that vertices are thickened to disks, and edges to bands. For each disk coming
in this way from an external vertex, cut a smaller disk in the interior, so as
to produce an oriented compact surface S(D), decomposed into disks, bands
and annuli. The orientation of S(D) induces an orientation on the core of each
annulus as shown on Figure 4.3:

+

Figure 4.3. How to orient a leaf.

(2) Embed S(D) into the interior of (Σ×I) in such a way that each annulus of S(D)
represents in H ' H1(Σ×I) the color of the corresponding external vertex of D.
The embedded annuli should be in disjoint “horizontal layers” of (Σ × I), and
their “vertical height” along I should respect the total ordering of the external
vertices of D. The result is a graph clasper C(D) in (Σ× I).

Actually, we will only need the surgery map ψk in degree k = 2. The degree 1 case is
special. We have A<,c1 (H) = A<1 (H) ' A1(H), and the surgery map ψ1 is still well-
defined on that group (and it is surjective) provided the torsion of the abelian group
IC/Y2 is ignored:

ψ1 : A1(H) −→ IC/Y2

Tors(IC/Y2)
.

(The group IC/Y2 contains 2-torsion [22]: its explicit surgery description involves spin
structures of Σ [43].)
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The following lemma is needed in the proof of Lemma 3.20. We shall prove it by
means of the surgery map ψ2.

Lemma 4.2. Let N ∈ IC be such that N
Y2∼ Σ× I and τ2(N) = 0. Then there exists a

disjoint union L of looped graph claspers of degree 2 and graph claspers of degree 3 in
(Σ× I) such that surgery along L yields N .

Proof. By surjectivity of ψ2, we can find y ∈ A<,c2 (H) such that ψ2(y) = {N} ∈ Y2IC/Y3.
We set x := ϕ−1s−1(y) ∈ Ac2(L±), where the isomorphisms s and ϕ are recalled in §4.1.
Lemma 3.2 implies that the following diagram is commutative:

A<,c2 (H)
ψ2 // Y2IC

Y3

τ2
����

Ac2(L±)

sϕ '

OO

−p2,0
// // Ac2,0(L±) '

// S2Λ2H
Λ4H

(Here, the bottom isomorphism is defined by
a b c d

7−→ ((a ∧ b)↔ (c ∧ d)) where

a, b, c, d ∈ L± are considered as elements of H by (4.1).) By assumption, we have
τ2ψ2(y) = 0 and we deduce that p2,0(x) = 0, i.e. x only consists of looped Jacobi
diagrams. The same deduction applies to y = sϕ(x) and the conclusion follows. �

4.3. The LMO homomorphism. We briefly review the LMO homomorphism, its
construction and main properties. For this purpose, we fix a system of meridians and
parallels (αi, βi)

g
i=1 on the surface Σ as shown in Figure 4.2. Then one can turn any

homology cylinder M over Σ into a homology 3-ball B by gluing, for each i ∈ {1, . . . , g},
a 2-handle to the surface ∂−M along the curve m−(αi), and a 2-handle to the surface
∂+M along the curve m+(βi). The cores of these 2-handles define a (2g)-component
framed tangle γ in the homology 3-ball B. By taking the Kontsevich–LMO invariant of
the pair (B, γ) and after an appropriate normalization, one can thus associate to M ∈ IC
an element ‹ZY (M) of (the degree completion of) A(L±Q). See [8] where the target is

denoted by AY (bge+ ∪ bge−). The important point is that the colors 1−, . . . , g− refer
to the curves α1, . . . , αg while 1+, . . . , g+ refer to β1, . . . , βg, so that the definition of‹ZY depends on the choice of (α, β). (The definition is also dependent on the choice
of an associator for the Kontsevich integral.) The space A(L±Q), equipped with the
multiplication

(4.4) D ? E :=

Ç
sum of all ways of gluing some of the i+-colored vertices of D

to some of the i−-colored vertices of E, for all i = 1, . . . , g

å
of L±Q-colored Jacobi diagramsD and E, is an associative Q-algebra. The aforementioned
normalization is done in such a way that‹ZY : IC −→ A(L±Q)

is a monoid homomorphism.
The push-out of the multiplication ? by the isomorphism κ defined at (4.2) is still

denoted by ?. For any HQ-colored Jacobi diagrams D and E, the multiplication ? on
A(HQ) is explicitly given by the formula

D ? E :=
∑

V ′⊂V, W ′⊂W
β : V ′

'−→W ′

1

2|V ′|
·
∏
v∈V ′

ω
Ä
color(v), color(β(v))

ä
· (D ∪β E)

where V and W denote the sets of external vertices of D and E respectively, and where
the sum is taken over all ways β of identifying a part V ′ of V with a part W ′ of W .
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Then the LMO homomorphism is defined in [23] as the composition

IC

Z

44S W [ _ c g

Z̃Y // A(L±Q)
κ

'
// A(HQ).

The LMO homomorphism is universal among rational-valued finite-type invariants of
homology cylinders [8, 23]. In terms of the surgery map introduced in §4.2, this universal
property of Z amounts to the following commutative diagram:

(4.5) A<,c(HQ)
ψ⊗Q

// //

χ−1

'

))SSSSSSSSSSSSSSSS

Ä
GrY IC

ä
⊗Q

GrZ
��

Ac(HQ).

It follows that the maps ψ ⊗Q and GrZ are isomorphisms.
The LMO homomorphism is compatible with stabilizations of the surface Σ. More

precisely, assume that the surface Σ has been stabilized to a surface Σs of genus gs (as

shown on Figure 2.1) and that the system of meridians and parallels (αi, βi)
gs

i=1 chosen
on Σs extends that of Σ. We denote Hs := H1(Σs) which contains a copy of H. Then,
the following diagram is commutative:

IC(Σ) //

Z
��

IC(Σs)

Z
��

A(HQ) // A(Hs
Q)

4.4. Johnson, Alexander and Casson from LMO. The degree 1 part of the LMO
homomorphism is equivalent to the first Johnson homomorphism [8]. More precisely, we
have the commutative diagram

(4.6) IC/Y2

τ1

��

Z1 // Ac1(HQ)

'
��

Λ3H // // Λ3HQ

where the isomorphism on the right side is given by
a

c

b

7−→ a ∧ b ∧ c.

Similarly, the second Johnson homomorphism corresponds to the “tree-reduction” of
the degree 2 part of the LMO homomorphism.

Lemma 4.3 (See [8]). There is a commutative diagram

KC/Y3

τ2
��

Z2 // Ac2(HQ)

p2,0
����

(Λ2H⊗Λ2H)
S2

Λ4H
// // Ac2,0(HQ)

where the bottom monomorphism is given by ((a ∧ b)↔ (c ∧ d)) 7→
a b c d

.

Next, the quadratic part of the relative RT torsion can be extracted from the degree
2 part of the LMO homomorphism in the following manner.
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Lemma 4.4. There is a commutative diagram

KC/Y3

−α
2

��

Z2 // Ac2(HQ)

p2,1
����

1
2S

2H // // Ac2,1(HQ),

where the monomorphism on the bottom is defined by a · b 7→ a b .

Proof. The quotient group KC/Y3
Y2IC/Y3 ' KC/Y2 consists only of order 2 elements, as follows

from [43]. So, for any element {M} of KC/Y3, we have that {M ◦M} = {M}2 lies in
Y2IC/Y3. We have that α(M2) = 2α(M) (by Proposition 3.13) and Z2(M2) = 2Z2(M)
(since we have Z(M2) = Z(M)?Z(M) and Z1(M) = 0). Therefore it suffices to establish
the commutativity of the diagram on the subgroup Y2IC/Y3 of KC/Y3.

Since the map ψ2 : A<,c2 (H) → Y2IC/Y3 is surjective, it is enough to check that

αψ2(D) = −2p2,1Z2ψ2(D) for any generator D of A<,c2 (H). The generators can be
of three types, namely H graphs, Φ graphs or Θ graphs. Let us first compute the
composition α ◦ ψ2 on these three types of generators. By Proposition 3.13, we have

(4.7) αψ2

Å
<h h′

ã
= −2hh′ ∈ S2H.

The same proposition also implies that

(4.8) αψ2

Ä ä
= 0 ∈ S2H.

Claim 4.5. For any h, i, j, k ∈ H, we have

(4.9) αψ2

Ä
< < <h i j k

ä
= ω(h, j) · ik − ω(h, k) · ij − ω(i, j) · hk + ω(i, k) · hj ∈ S2H.

In order to prove this claim, we use the decomposition of Ac2(HQ) into irreducible
Sp(HQ)-modules. This can be found in [23, §5], whose notation we follow:

Ac2(HQ) = Ac2,0(H)⊕Ac2,1(H)⊕Ac2,2(H)

= (Γ0 ⊕ Γω2 ⊕ Γ2ω2)⊕ (Γ2ω1)⊕ (Γ0) .

(Note that this formula was obtained in [23] for g ≥ 3 only. But, since both invariants
α and Z are well-behaved with respect to stabilization, we can assume without loss of
generality that the surface Σ has arbitrary high genus g.) Since the composition

Ac2(HQ) '
χ

// A<,c2 (HQ) '
ψ2 // Y2IC

Y3
⊗Q α // S2HQ ' Γ2ω1

is Sp(HQ)-equivariant, we deduce that it vanishes on the subspace Ac2,0(H)⊕Ac2,2(H).

Thus, using the explicit formula for χ−1 given in [23, Proposition 3.1], we obtain that

αψ2

Ä
< < <h i j k

ä
= αψ2χ

Å
χ−1
Ä

< < <h i j k

äã
= αψ2χ

Å
p2,1χ

−1
Ä

< < <h i j k

äã
=

1

2
αψ2χ

Å
−ω(h, j) i k + ω(h, k) i j + ω(i, j) h k − ω(i, k) h j

ã
.

Besides we deduce from (4.7) that

αψ2χ

Å
h h′

ã
= αψ2

Å
1

2 <h h′ +
1

2 <h′ h

ã
= −2hh′.
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and the claim follows.
Now, in order to complete the proof of the lemma, we use (4.5) to deduce that the

composition p2,1Z2ψ2 : A<,c2 (H) → Ac2,1(HQ) coincides with p2,1χ
−1. Therefore, the

formula for χ−1 in [23, Proposition 3.1] gives

p2,1Z2ψ2

Ä ä
= 0, p2,1Z2ψ2

Ä
<h h′

ä
= h h′

and

p2,1Z2ψ2

Ä
< < <h i j k

ä
=

1

2

Ä
−ω(h, j) i k +ω(h, k) i j +ω(i, j) h k −ω(i, k) h j

ä
.

We conclude thanks to (4.7), (4.8) and (4.9) . �

The relationship between the LMO homomorphism Z and the Casson invariant λj is
more subtle. First of all, the Heegaard embedding j : Σ→ S3 necessary to the definition
of λj (see §3.3) is chosen compatibly with the system of meridians and parallels (α, β)
on which the construction of Z depends (see §4.3). More precisely, we assume that the
curves j(αi) ⊂ Fg bound disks in the lower handlebody of the Heegaard splitting of
S3, while the curves j(βi) ⊂ Fg bound disks in the upper handlebody. The following
is observed in [8] from the relation between the Casson invariant of homology 3-spheres
and the LMO invariant [35]:

(4.10) KC/Y3

λj

��

Z̃Y2 // Ac2(L±Q)

p2,2
����

Z
· 1
2

// Ac2,2(HQ)

Since ‹ZY2 is obtained from Z2 by post-composing with the map κ−1 = ϕ−1sχ, we see

that the Θ part of ‹ZY2 is equal to minus the Θ part of Z plus something derived from
its H part and its Φ part. In particular, we deduce the following from Lemma 4.3 and
Lemma 4.4.

Lemma 4.6. Let M ∈ KC be such that τ2(M) = 0 and α(M) = 0. Then, we have

p2,2Z2(M) = −λj(M)

2
· .

The connection between Z2 and λj is further investigated in §7, where we extend the
core of the Casson invariant to homology cylinders.

5. Characterization of the Y3-equivalence for homology cylinders

In this section we prove the characterization of the Y3-equivalence relation on IC
(Theorem A), we give a diagrammatic description of the group IC/Y3 and we deduce
certain properties of this group.

5.1. Proof of Theorem A. We now show that, given two homology cylinders M and
M ′ over Σ, the following assertions are equivalent:

(a) M and M ′ are Y3-equivalent;
(b) M and M ′ are not distinguished by any Goussarov–Habiro finite-type invariants

of degree at most 2;
(c) M and M ′ share the same invariants ρ3, α and λ;
(d) The LMO homomorphism Z agrees on M and M ′ up to degree 2.
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The implication (a)⇒(b) follows from Lemma 2.3. The implication (b)⇒(d) is guar-
anteed by the fact that the degree i part of the LMO homomorphism is a finite-type
invariant of degree i [8]. Thus it remains to prove that (a), (c) and (d) are equivalent.

The implication (a)⇒(c) says that ρ3, λ and α are invariant under Y3-equivalence.
We have seen in §3.2 and §3.3 that α and λ are finite-type invariants of degree 2: we
deduce from Lemma 2.3 that α and λ are Y3-invariant. The map ρ3 : IC → Aut(π/Γ4π)
is J3-invariant (by Lemma 6.1 below) so that it is also Y3-invariant.

We now prove (c)⇒(d). Two homology cylinders M and M ′ satisfying (c) cannot
be distinguished by the first Johnson homomorphism, nor by the Birman–Craggs ho-
momorphism according to Lemma 3.22. We deduce from the characterization of the

Y2-equivalence given in [43] that M
Y2∼ M ′. The monoid IC/Y3 being a group [18, 22],

one can find a D ∈ Y2IC such that

(5.1) M
Y3∼ D ◦M ′.

Since Z is a monoid homomorphism, we deduce that Z≤2(M) is the degree≤ 2 truncation
of Z≤2(D)?Z≤2(M ′), so it suffices to show that Z≤2(D) = ∅ (the empty diagram). But

this is equivalent to Z2(D) = 0 given that D
Y2∼ Σ× I. The decomposition (5.1) and the

assumption (c) have three consequences:

(1) ρ3(D) = 1, which implies that τ2(D) = 0,
(2) α(D) = 0,
(3) and λ(D) = 0 by formula (3.19).

Thanks to Lemma 4.3, Lemma 4.4 and Lemma 4.6, we deduce that Z2(D) = 0 as desired.
We now prove (d)⇒(a). Let M,M ′ ∈ IC be such that Z≤2(M) = Z≤2(M ′). Again,

since IC/Y3 is a group, one can find a D ∈ IC such that we have the decomposition
(5.1). We deduce from (5.1) and the assumption (d) that Z1(D) = 0 which, according
to (4.6), is equivalent to τ1(D) = 0. Next, we deduce from (5.1) and the assumption
(d) that Z2(D) = 0 which, by Lemma 4.3, Lemma 4.4 and Lemma 4.6, imply that
τ2(D) = 0, α(D) = 0 and λ(D) = 0. So we have β(D) = 0 by Lemma 3.22 and, since

the Y2-equivalence is classified by (τ1, β), we obtain that D
Y2∼ Σ × I. The universal

property of the LMO homomorphism (4.5) gives, in degree 2, the following commuta-
tive diagram

A<,c2 (H)
ψ2 // //

−⊗Q
��

Y2IC/Y3

Z2

��

A<,c2 (HQ) Ac2(HQ).
χ
'oo

The left vertical arrow is injective by Lemma 4.1, which proves that Z2 is injective.

Hence Z2(D) = 0 implies that D
Y3∼ (Σ × I) which, combined with the decomposition

(5.1), show that M and M ′ satisfy (a).
This concludes the proof of Theorem A and shows the following.

Corollary 5.1. The abelian group Y2IC/Y3 is torsion-free, and the surgery map

ψ2 : A<,c2 (H)→ Y2IC/Y3

is an isomorphism.

5.2. Diagrammatic description of KC/Y3. We aim at giving in this section a dia-
grammatic description of the group IC/Y3 using the previous results. One way to do
that would be to start from the central extension

(5.2) 0 // Y2IC/Y3
// IC/Y3

// IC/Y2
// 1
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and to use the diagrammatic descriptions of IC/Y2 and Y2IC/Y3 which are given by
[43] and Corollary 5.1 respectively. However this method is not the most convenient one
since IC/Y2 is not torsion-free. Instead we shall proceed in the following way.

Lemma 5.2. We have a central extension of groups

(5.3) 0 // KC/Y3
// IC/Y3

τ1 // Λ3H // 1

where KC = C[2] denotes the second term of the Johnson filtration of C.

Proof. As observed in the proof of Lemma 3.18, it follows from [43] that KC/Y3 is
generated by elements of the form (Σ× I)G, where G is either a degree 2 graph clasper
or a Y -graph with (at least) one special leaf. In the first case, (Σ × I)G is a central
element in IC/Y3 by Lemma A.2. The same holds in the second case by Lemma A.2
and Lemma A.5. �

The central extension (5.3) is, up to equivalence, uniquely determined by its charac-
teristic class in H2(Λ3H;KC/Y3). Since Λ3H is torsion-free, we have by the universal
coefficient theorem that

(5.4) H2(Λ3H;KC/Y3) ' Hom(H2(Λ3H),KC/Y3) ' Hom(Λ2Λ3H,KC/Y3).

Thus, in order to describe the (isomorphism type of) the group IC/Y3, we shall pro-
ceed in two steps: first, we shall give in this subsection a diagrammatic description
of the group KC/Y3 and, second, we shall give in the next subsection a diagrammatic
description of the characteristic class of (5.3) in Hom(Λ2Λ3H,KC/Y3).

Our diagrammatic description of KC/Y3 is derived from a group homomorphism

ψ[2] : A<,c2 (H)⊕ Z·(H ×H)⊕ Z·H ⊕ Z −→ KC/Y3,

where Z·(H ×H) and Z·H denote the free abelian groups generated by the sets H ×H
and H respectively. We define ψ[2] in the following way:

• For all D ∈ A<,c2 (H), we set ψ[2](D) := ψ2(D) where ψ2 is Habiro’s map as
defined in §4.2.
• For all (h, h′) ∈ H × H, we set ψ[2](h, h

′) to be the Y3-equivalence class of
(Σ× I)Yh,h′ where Yh,h′ is a Y -graph obtained as follows. Consider the oriented

surface S consisting of a disk, connected by three bands to three annuli, whose
cores are oriented as in Figure 4.3. Embed S into the interior of (Σ × I) so as
to obtain a Y -graph with one special leaf and two other leaves satisfying the
following: they should have framing number zero, one should represent h ∈ H
and lie in Σ × [−1, 0] while the other one should represent h′ ∈ H and lie in
Σ× [0, 1].
• For all h ∈ H, we set ψ[2](h) to be the Y3-equivalence class of (Σ×I)Yh where Yh

is a Y -graph obtained as follows. We take the same surface S as before but we
embed it into the interior of (Σ× I) so as to obtain a Y -graph with two special
leaves, and one leaf which is required to represent h ∈ H and to have framing
number zero.
• We set ψ[2](1) to be the Y3-equivalence class of (Σ× I)Ys where Ys is a Y -graph

with three special leaves.

(We refer the reader to Appendix B for the definition of framing numbers in Σ× I.)

Lemma 5.3. The map ψ[2] is a well-defined homomorphism, and it is surjective.

Proof. By §4.2, the fact that ψ[2] is well-defined needs only to be checked on the summand
Z·(H ×H)⊕ Z·H ⊕ Z. The independence on the choice of the disk and bands follows
from Lemma A.16 and Lemma A.10, respectively. We now check the independence on
the choice of the leaves. Let K and K ′ be two possible choices for an oriented leaf of a
Y -graph, representing the same element in H. Then K and K ′ cobound an embedded
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oriented surface F of genus g(F ) in (Σ × I). Furthermore, since the framing numbers
of K and K ′ in (Σ× I) are equal, we can find such a surface F such that K and K ′ are
0-framed with respect to F . (This follows, for instance, from Lemma B.4.) By Lemma
A.10, we can assume that F does not intersect any edge of the Y -graph. We can also
freely assume that F does not intersect any other leaf of the Y -graph, since they are
either special leaves, or lying in a different “horizontal layer” of (Σ× I). So, if we have
g(F ) = 0, then K and K ′ are isotopic as framed knots and we are done. Otherwise,
we can decompose K as a framed connected sum of K ′ and g(F ) framed knots, each
bounding a genus 1 surface disjoint from the Y -graph and being 0-framed with respect
to it. The result then follows from Corollary A.13.

The surjectivity of ψ[2] is proved by refining the argument used at the beginning of the
proof of Lemma 3.18. Let M ∈ KC. Using the notation (3.20), the quadratic function
β(M) ∈ B≤2 can be decomposed as

β(M) = ε · 1 +
m∑
i=1

gi +
n∑
j=1

hj · h′j

where ε ∈ {0, 1}, g1, . . . , gm ∈ H and h1, h
′
1, . . . , hn, h

′
n ∈ H for some positive integers

m,n. Let Ys, Yg (for g ∈ H) and Yh,h′ (for h, h′ ∈ H) be the Y -graphs with special
leaves described in the definition of ψ[2]. Then, using Lemma 3.16, we see that

β(M) = ε · β ((Σ× I)Ys) +
m∑
i=1

β
Ä
(Σ× I)Ygi

ä
+

n∑
j=1

β

Å
(Σ× I)Yhj,h′j

ã
.

Since the Y2-equivalence is classified by the couple (τ1, β), we deduce that

M
Y2∼ (Σ× I)Ys

ε ◦
m∏
i=1

(Σ× I)Ygi ◦
n∏
j=1

(Σ× I)Yhj,h′j
.

Therefore, by clasper calculus, there exists a D ∈ IC such that D
Y2∼ (Σ× I) and

M
Y3∼ D ◦ (Σ× I)Ys

ε ◦
m∏
i=1

(Σ× I)Ygi ◦
n∏
j=1

(Σ× I)Yhj,h′j
.

We conclude using the fact that the restriction of ψ[2] to the summand A<,c2 (H), namely
ψ2, is surjective onto the group Y2IC/Y3. �

Next we set

A<,c[2] (H) :=
A<,c2 (H)⊕ Z·(H ×H)⊕ Z·H ⊕ Z

(G0, G1, G2, G3, D1, D2, D3)
,

where the relations (G0, G1, G2, G3) and (D1, D2, D3) are defined as follows:

(G0) (h, h)− (h) for all h ∈ H,

(G1) 2 · (h, k) +
< < <h h k k

+
<h k for all h, k ∈ H,

(G2) 2 · (h) +
<h h for all h ∈ H,

(G3) 2 · 1 + ,

(D1) (h+ h′, k)− (h, k)− (h′, k) + ω(h, h′) · (k) +
< < <h h′ k k

for all h, h′, k ∈ H,

(D2) (h, k + k′)− (h, k)− (h, k′) + ω(k, k′) · (h) +
< < <h h k k′

for all h, k, k′ ∈ H,

(D3) (h+ h′)− (h)− (h′) + ω(h, h′)·1+
<h h′ for all h, h′ ∈ H.

Here the generator of the summand Z is denoted by 1, the generators of the summand
Z·H are denoted by (h) with h ∈ H, and the generators of the summand Z·(H ×H) are
denoted by (h, k) with h, k ∈ H. Observe that, thanks to the relation (G0), we could
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get rid of the summand Z·H. Besides, (G2) is a consequence of (G0) and (G1). Here is
yet another relation in A<,c[2] (H):

Lemma 5.4. For all h, h′ ∈ H, we have

(5.5) (h, h′)− (h′, h)− ω(h, h′) ·
<h′ h −

ω(h, h′)(ω(h, h′)− 1)

2
· = 0 ∈ A<,c[2] (H).

Proof. We set k := h+ h′. Using (G0), (D1) and (D2), we get

(k) = (k, k) = (h, k) + (h′, k)− ω(h, h′) · (k)−
< < <h h′ k k

=

Å
(h, h′) + (h, h)− ω(h′, h) · (h)−

< < <h h h′ h

ã
+

Å
(h′, h′) + (h′, h)− ω(h′, h) · (h′)−

< < <h′ h′ h′ h

ã
−ω(h, h′) · (k)−

< < <h h′ k k
.

It follows from the IHX and STU-like relations that, for all a, b, c ∈ H,

< < <a b b c
= 0 ∈ A<,c[2] (H).

We deduce that

(1 + ω(h, h′)) · (k)− (1 + ω(h, h′)) · (h)− (1 + ω(h, h′)) · (h′)

= (h, h′) + (h′, h)−
< < <h h h′ h

−
< < <h h′ k k

= (h, h′) + (h′, h) +
< < <h h h′ h′

= (h′, h)− (h, h′)−
<h h′ ,

where the last equality follows from relation (G1). Using now (D3), we get

(h′, h)− (h, h′)−
<h h′ = −(1 + ω(h, h′))ω(h, h′) · 1− (1 + ω(h, h′)) ·

<h h′ ,

and, using (G3), we obtain

(h′, h)− (h, h′) =
(1 + ω(h, h′))ω(h, h′)

2
· − ω(h, h′) ·

<h h′ .

The STU-like relation allows us to conclude. �

Theorem 5.5. The map ψ[2] factorizes to an isomorphism

ψ[2] : A<,c[2] (H)
'−→ KC/Y3

and the group A<,c[2] (H) is a free abelian group with the same rank as A<,c2 (H).

Before proving this theorem, we shall draw two of its consequences. First, after one
has chosen a basis of the free abelian group H, one can derive from this diagrammatic
description a presentation of the abelian group KC/Y3. Second, Theorem 5.5 implies
the following.
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Corollary 5.6. We have the following commutative diagram of abelian groups, whose
rows are short exact sequences:

0 // Y2IC/Y3
// KC/Y3

β
// B≤2 // 0

0 // A<,c2 (H) //

ψ2 '

OO

A<,c[2] (H)

ψ[2] '

OO

b // B≤2 // 0.

Here B≤2 is the space of polynomial functions Spin(Σ) → Z2 of degree ≤ 2 and, using

the notation (3.20), we define the homomorphism b as follows: b is trivial on A<,c2 (H),
b sends 1 ∈ Z to the constant function 1, (h) ∈ Z ·H to the affine function h, and
(h, k) ∈ Z·(H ×H) to the quadratic function h · k.

Proof. The fact that b is well-defined is easily checked using the following formula:

∀h, k ∈ H, h+ k = h+ k + ω(h, k) · 1 ∈ B≤1.

The commutativity of the diagram follows from the definition of ψ[2] and from Lemma
3.16. The top sequence is exact according to [43]. Since the vertical maps are isomor-
phisms (by Corollary 5.1 and Theorem 5.5), the bottom sequence is exact too. �

Proof of Theorem 5.5. We start by proving that ψ[2] vanishes on (G0), (G1), (G3), and
we recall that (G2) is a consequence of (G0) and (G1). First of all, let us prove that

(5.6) ∀h ∈ H, ψ[2](h) = ψ[2](h, h).

Let Yh be a Y -graph as described in the definition of ψ[2]: its “non-special” leaf is
denoted by L. By Lemma A.6, the Y -graph Yh is equivalent to a Y -graph Y ′h with

one special leaf and two other leaves given by L and its parallel L‖. Now, using the
“framing number zero” assumption on L, we can (up to Y3-equivalence) put L and L‖ in

two disjoint “horizontal layers”. More precisely, since we have Lk+(L,L‖) = Fr(L) = 0,
one can find a framed oriented knot K in a neighborhood of the top surface Σ×{+1} and

a compact oriented surface S disjoint from L such that ∂S = L‖t(−K), and both knots
are 0-framed with respect to S. By Lemma A.10, we can assume that the edges of Y ′h do
not intersect S. Next, using Corollary A.13, we can find a Y -graph Y ′′h with one special

leaf, one leaf given by L and another leaf given by K such that (Σ× I)Y ′′
h

Y3∼ (Σ× I)Y ′
h
.

Since we have Fr(K) = Fr(L‖) = Fr(L) = 0, the graph Y ′′h can play the role of Yh,h in
the definition of ψ[2]. We conclude that

ψ[2](h) = {(Σ× I)Yh} =
¶

(Σ× I)Y ′′
h

©
= ψ[2](h, h).

Next, the relation

(5.7) 2ψ[2](1) = −ψ[2]( )

is an immediate consequence of Corollary A.18(2) and Lemma A.4. To check the relation

(5.8) ∀h, k ∈ H, 2ψ[2](h, k) = −ψ[2]

Ä
< < <h h k k

ä
− ψ[2]

Ä
<h k

ä
,

we consider a Y -graph Yh,k as described in the definition of ψ[2]. Then Lemma A.17
tells that, up to Y3-equivalence, we can replace two copies of Yh,k by a Φ-graph and an
H-graph, which has two pairs of parallel leaves. Then, using the “framing number zero”
assumption on the non-special leaves of Yh,k and an argument similar to the previous
lines, the two leaves of each pair can be put in two disjoint “horizontal layers”. Relation
(5.8) follows.
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We now show that ψ[2] vanishes on (D3). More precisely, we show that Corollary A.12
implies that, for all h, h′ ∈ H,

(5.9) ψ[2](h+ h′) = ψ[2](h) + ψ[2](h
′)− ω(h, h′) · ψ[2](1)− ψ[2]( <h h′ ).

Let Kh (respectively Kh′) be an oriented framed knot in Σ × [−1, 0] (respectively in
Σ× [0, 1]) with framing number zero and representing h ∈ H (respectively h′ ∈ H). Let
Kh]Kh′ denote a framed connected sum of Kh and Kh′ . By Corollary A.12 and Lemma
A.6, we have

(Σ× I)Y
Y3∼ ψ[2](h) + ψ[2](h

′)− ψ[2]( <h h′ ),

where Y denotes a Y -graph with two special leaves, the third leaf being a copy ofKh]Kh′ .
On the other hand, by Lemma B.2 and Lemma B.4, the framing number of Kh]Kh′ is
equal to −ω(h, h′). Hence, we can reduce the framing number of Kh]Kh′ to zero by
adding |ω(h, h′)| isolated (+1)-twists or (−1)-twists, depending on whether ω(h, h′) is
positive or negative respectively. Suppose that ω(h, h′) ≤ 0. Then by Corollary A.12
and Lemma A.5, we have

(Σ× I)Y + (−ω(h, h′)) · (Σ× I)Ys
Y3∼ ψ[2](h+ h′)

where Ys is a Y -graph with three special leaves, and equation (5.9) follows. The case
ω(h, h′) ≥ 0 is shown similarly.

By the exact same arguments, one can use Lemma A.11 to check that

(5.10) ψ[2](h+ h′, k) = ψ[2](h, k) + ψ[2](h
′, k)− ω(h, h′) · ψ[2](k)− ψ[2]( < < <h h′ k k

)

for all h, h′, k ∈ H. Here again, we need the “framing number zero” assumption for the
“non-special” leaves in the definition of ψ[2]. Similarly, we have

(5.11) ψ[2](h, k + k′) = ψ[2](h, k) + ψ[2](h, k
′)− ω(k, k′) · ψ[2](h)− ψ[2]( < < <h h k k′

).

for all h, k, k′ ∈ H. We thus have that ψ[2] vanishes on (D1) and (D2).

So far, we have shown that ψ[2] factorizes to a surjective map ψ[2] : A<,c[2] (H)→ KC/Y3.

To prove that it is actually an isomorphism, we consider the subgroup “1
2”A<,c2 (H) of

A<,c2 (H)⊗Q generated by A<,c2 (H) and the following elements:

1

2
and

1

2

Ä
< < <h h k k

+
<h k

ä
(for all h, k ∈ H).

Thus we have the inclusions

A<,c2 (H) ⊂ “
1

2
”A<,c2 (H) ⊂ 1

2
A<,c2 (H) ⊂ A<,c2 (H)⊗Q.

We also consider the homomorphism of abelian groups

z : A<,c[2] (H) −→ “
1

2
”A<,c2 (H),

which is the identity on A<,c2 (H) and is defined as follows on Z·(H ×H)⊕ Z·H ⊕ Z:

z(h, k) := −1

2

Ä
< < <h h k k

+
<h k

ä
, z(h) := −1

2 <h h , z(1) := −1

2
.

A straightforward computation, based on the multilinearity and STU-like relations in
A<,c2 (H)⊗Q, shows that z is well-defined. We shall prove the following.

Claim 5.7. The map z is an isomorphism and “1
2”A<,c2 (H) is a lattice of A<,c2 (H)⊗Q.
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This will conclude the proof of the theorem since, by the universal property of the LMO
homomorphism (4.5), we have the following commutative diagram:

A<,c[2] (H)

ψ[2]

����

z
// “1

2”A<,c2 (H)
� _

��

KC/Y3
χ◦Z2

// A<,c2 (H)⊗Q.

We now prove Claim 5.7. For that purpose, we shall work with the abelian group
A(L±) defined in §4.1, which is isomorphic to A<(H) via the composition

A(L±)
ϕ−→
'
A<(−H)

s−→
'
A<(H).

In particular, recall that L± denotes the abelian group freely generated by the set
{1+, . . . , g+}∪ {1−, . . . , g−}. There is a natural order � on this set, which declares that
i− � j− � i+ � j+ if i ≤ j. The loop degree gives the following decomposition:

Ac2(L±) = Ac2,0(L±)︸ ︷︷ ︸
A:=

⊕Ac2,1(L±)︸ ︷︷ ︸
B:=

⊕Ac2,2(L±)︸ ︷︷ ︸
C:=

.

The abelian group B being freely generated by the elements

x y (for all x, y ∈ {1+, . . . , g+} ∪ {1−, . . . , g−} such that x � y),

we also have the decomposition Ac2(L±) = A ⊕ B′ ⊕ C where B′ is the subgroup of
Ac2(L±) generated by the elements

b(x, y) := − x y +
x y y x

(for all x, y such that x � y).

We then consider the subgroup

“
1

2
”Ac2(L±) := A⊕ 1

2
B′ ⊕ 1

2
C

of (A⊕B′ ⊕ C)⊗Q = Ac2(L±)⊗Q. This is a lattice of Ac2(L±)⊗Q satisfying

Ac2(L±) ⊂ “
1

2
”Ac2(L±) ⊂ 1

2
Ac2(L±) ⊂ Ac2(L±)⊗Q.

We also consider the group homomorphism

Υ : “
1

2
”Ac2(L±) −→ A<,c[2] (H)

that coincides with s ◦ ϕ on A and is defined on the basis of 1
2B
′ ⊕ 1

2C as follows:

Υ

Å
1

2
b(x, y)

ã
:= {(x, y)} (for all x, y with x � y) and Υ

Å
1

2

ã
:= {1}.

Here an element x of {1+, . . . , g+} ∪ {1−, . . . , g−} is regarded as an element of H by
(4.1). By construction of z and Υ we have the following commutative diagram:

“1
2”Ac2(L±)

Υ

xxqqqqqqqqqq

� � //

s◦ϕ
��

Ac2(L±)⊗Q

s◦ϕ'
��

A<,c[2] (H)
z

// // “1
2”A<,c2 (H)

� � // A<,c2 (H)⊗Q

Therefore Claim 5.7 will follow from the surjectivity of Υ.
In order to prove that Υ is surjective, observe that we have Υ(x) = {s ◦ ϕ(x)} for all

x ∈ Ac2(L±) ⊂ “1
2”Ac2(L±), so that any element of A<,c[2] (H) coming from the summand

A<,c2 (H) belongs to the image of Υ. It is also clear that {1} is in the image of Υ. Thus,
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we just have to check that (h) belongs to Im(Υ) for all h ∈ H, and that (h, k) belongs
to Im(Υ) for all h, k ∈ H. Relation (D3) implies that

∀h1, h2 ∈ H, (h1 + h2) ≡ (h1) + (h2) mod Im(Υ)

so that (h) can be decomposed as a sum of some (x)’s (with x ∈ {1+, . . . , g+, 1−, . . . , g−}).
Since we have (x) = Υ

Ä
1
2b(x, x)

ä
, this shows that (h) ∈ Im(Υ). Next, relations (D1)

and (D2) imply that

∀h1, h2 ∈ H, (h1 + h2, k) ≡ (h1, k) + (h2, k) mod Im(Υ),

∀k1, k2 ∈ H, (h, k1 + k2) ≡ (h, k1) + (h, k2) mod Im(Υ),

so that (h, k) writes as a sum of some (x, y)’s (where x, y ∈ {1+, . . . , g+, 1−, . . . , g−}).
Since we have (x, y) = Υ

Ä
1
2b(x, y)

ä
if x � y and since (5.5) implies that (x, y) ≡ (y, x)

mod Im(Υ) in general, all this shows that (h, k) ∈ Im(Υ). �

5.3. Diagrammatic description of IC/Y3. We can now give the diagrammatic de-
scription of the isomorphism type of the group IC/Y3.

Theorem 5.8. The characteristic class of the central extension

(5.12) 0 // KC/Y3
// IC/Y3

τ1 // Λ3H // 1

seen as an element of

H2
Ä
Λ3H;KC/Y3

ä
' Hom

Ä
Λ2Λ3H,KC/Y3

ä ψ[2]

' Hom
(
Λ2Λ3H,A<,c[2] (H)

)
is the antisymmetric bilinear map [·, ·] : Λ3H × Λ3H → A<,c[2] (H) defined by

[a∧ b∧ c, d∧e∧f ] :=


ω(c, d)

< < <a b e f − ω(b, d)
< < <a c e f + ω(a, d)

< < <b c e f

+ω(c, e)
< < <d a b f

− ω(b, e)
< < <d a c f

+ ω(a, e)
< < <d b c f

+ω(c, f)
< < <d e a b − ω(b, f)

< < <d e a c + ω(a, f)
< < <d e b c

 .

Theorem 5.8 is a refinement of a result of Morita on the Torelli group. Indeed he
described in [53, Theorem 3.1] the characteristic class of the central extension

0 // τ2 (K)
τ−1
2 // I/I[3]

τ1 // Λ3H // 1 .

According to Lemma 3.2, the map τ2 ◦ ψ[2] : A<,c[2] (H)→ (Λ2H⊗Λ2H)
S2

Λ4H
sends

< < <a b c d

to (a ∧ b) ↔ (c ∧ d). Thus, taking into account the fact that Morita’s τ2 differs from
ours by a minus sign, one sees that Theorem 5.8 generalizes Morita’s description.

Proof of Theorem 5.8. Let us denote by e the characteristic class in

H2(Λ3H;KC/Y3) ' Hom(Λ2Λ3H,KC/Y3)

of the central extension (5.12), and let s be a setwise section of τ1. Then the cohomology
class e is represented by the 2-cocycle c (in the bar complex) defined by

∀x, y ∈ Λ3H, c(x|y) := s(x)s(y)s(xy)−1 ∈ KC/Y3 ⊂ IC/Y3,

so that e ∈ Hom(Λ2Λ3H,KC/Y3) is given by

∀x, y ∈ Λ3H, e(x ∧ y) = c
Ä
(x|y)− (y|x)

ä
= c(x|y)c(y|x)−1

= s(x)s(y)s(xy)−1s(yx)s(x)−1s(y)−1

= [s(x), s(y)].
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This shows that e is determined by the Lie bracket of the Lie ring of homology cylinders
GrY IC, in the sense that the following diagram is commutative:

IC/Y2 × IC/Y2
[·,·]

//

τ1×τ1
����

Y2IC/Y3� _

��

Λ3H × Λ3H e
// KC/Y3.

But τ1 induces an isomorphism from IC/Y2
Tors(IC/Y2) to Λ3H ' A<,c1 (H) [43], with inverse

given by the surgery map ψ1 of §4.3. Moreover, the Lie bracket of GrY IC factorizes to
IC/Y2

Tors(IC/Y2) since Y2IC/Y3 is torsion-free by Corollary 5.1. Thus, we obtain

IC/Y2
Tors(IC/Y2) ×

IC/Y2
Tors(IC/Y2)

[·,·]
// Y2IC/Y3� _

��

Λ3H × Λ3H e
//

'ψ1×ψ1

OO

KC/Y3.

Since the surgery map ψ preserves the Lie brackets, we obtain that, for all a∧b∧c ∈ Λ3H
and d ∧ e ∧ f ∈ Λ3H,

ψ−1
[2] ◦ e

Ä
(a ∧ b ∧ c) ∧ (d ∧ e ∧ f)

ä
= ψ−1

2

Äî
ψ1(a ∧ b ∧ c), ψ1(d ∧ e ∧ f)

óä
=

ï
< <a b c , < <d e f

ò
=

< <a b c < < <d e f − < <d e f < < <a b c .

The desired formula follows from the STU-like relation. �

We conclude this section with a few consequences of the previous results on the
structure of the group IC/Y3. First of all, a presentation of IC/Y3 could be obtained
from a presentation of KC/Y3 (which is discussed after Theorem 5.5) using the short
exact sequence (5.12). Besides, we can deduce the following assertions.

Corollary 5.9. The group IC/Y3 has the following properties:

(i) It is torsion-free;
(ii) Its center is KC/Y3;

(iii) Its commutator subgroup is strictly contained in Y2IC/Y3, and it is the image of
c(Γ2I) by the canonical projection IC → IC/Y3.

Proof. According to Theorem 5.5, the group KC/Y3 is free abelian. Since Λ3H is also a
free abelian group, assertion (i) follows from the short exact sequence (5.12).

We already know that (5.12) is a central extension. To prove assertion (ii), it thus
remains to show that any central element M of IC/Y3 belongs to KC/Y3. Since M is
central, t := τ1(M) ∈ Λ3H satisfies [t, ·] = 0 for the bracket introduced in Theorem 5.8.
By composing this bracket with

A<,c2 (H) ⊂ A<,c2 (HQ)
χ−1

'
// Ac2(HQ)

p2,2
// // Ac2,2(HQ),

we get a skew-symmetric bilinear form bω : Λ3HQ × Λ3HQ → Ac2,2(HQ) and, again, we
have bω(t, ·) = 0. A direct computation shows that, for all x1, x2, x3, y1, y2, y3 ∈ HQ,

bω(x1 ∧ x2 ∧ x3, y1 ∧ y2 ∧ y3) = −1

4

∣∣∣∣∣ ω(x1, y1) ω(x1, y2) ω(x1, y3)

ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣ · .

(See [23, Lemma 5.4].) By considering a symplectic basis of (HQ, ω), it can be seen that
bω is itself a symplectic form on Λ3HQ. We deduce that t = 0, i.e. M belongs to KC/Y3.
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We now prove assertion (iii). The inclusion Γn(IC/Yk) ⊂ YnIC/Yk holds true for any
integers k ≥ n ≥ 1 by results of Goussarov [18] and Habiro [22]. For k = 3 and n = 2,
this inclusion is strict for the following reasons: in the case g = 0, the group IC/Y3 is
abelian but Y2IC/Y3 is sent isomorphically to 2Z by the Casson invariant [22]; in the case
g > 0, we know by Proposition 3.13 that the group homomorphism α : IC/Y3 → S2H is
not trivial on Y2IC/Y3, but it is on Γ2(IC/Y3) since S2H is abelian. It now remains to
show that Γ2(IC/Y3) is contained in c(Γ2I)/Y3 (the converse inclusion being trivially
true). For this, we consider a finite product of commutators

p :=
r∏
i=1

[Mi, Ni]

in the group IC/Y3. If we replace one of theMi’s by its productMi·K with aK ∈ KC/Y3,
the product p remains unchanged since K belongs to the center of IC/Y3. But, any
M ∈ IC/Y3 can be decomposed in the form M = K · c(h) where K ∈ KC/Y3 and h ∈ I
since we have the short exact sequence (5.12) and τ1 : I → Λ3H is surjective. Thus we
can assume that each Mi and each Ni in p belongs to c(I)/Y3. �

6. Characterization of the J2-equivalence and the J3-equivalence

In this section we characterize the J2-equivalence and the J3-equivalence relations
(Theorem B and Theorem C, respectively).

6.1. Proof of Theorem B. The following lemma with k = 2 proves the necessary
condition in Theorem B.

Lemma 6.1. Let M,M ′ ∈ IC. If M is Jk-equivalent to M ′, then we have

ρk(M) = ρk
(
M ′
)
∈ Aut(π/Γk+1π).

Proof. By assumption, there exist a surface S ⊂ int(M) and an s ∈ M(S)[k] such that
M ′ = Ms. Let E be the closure of M \ (S × [−1, 1]) where S × [−1, 1] is a regular
neighborhood of S in M . Thus M ′ is obtained by gluing to E the mapping cylinder
of s. The van Kampen theorem shows that there exists a unique isomorphism between
π1(M)/Γk+1π1(M) and π1(M ′)/Γk+1π1(M ′) such that the following diagram commutes:

π1(M)
Γk+1π1(M) '

∃! //____________ π1(M ′)
Γk+1π1(M ′) .

π1(E)
Γk+1π1(E)

jjjjTTTTTTTT
44 44jjjjjjj

This triangular diagram can be “expanded” as follows:

π1(Σ)
Γk+1π1(Σ)

'
m+,∗

yysssssssss

'

m′+,∗

%%KKKKKKKKKK

��

π1(M)
Γk+1π1(M)

' // π1(M ′)
Γk+1π1(M ′)

π1(E)
Γk+1π1(E)

eeKKKKKKKKK

99ssssssssss

π1(Σ)
Γk+1π1(Σ)

'
m−,∗

UU

'
m′−,∗

II

OO

The front faces of this bipyramidal diagram commute. Therefore its back faces are
commutative too, and we deduce that ρk(M) = ρk(M

′). �
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To prove the sufficient condition in Theorem B, assume that M,M ′ ∈ IC are such
that ρ2(M) = ρ2(M ′). Since IC/Y2 is a group [18, 22], there is a D ∈ IC such that M is
Y2-equivalent to D◦M ′. We deduce that ρ2(D) = 1 or, equivalently, that τ1(D) = 0. As
in the proof of Lemma 3.18, we can use [43] to find some Y -graphs with special leaves
G1, . . . , Gm in (Σ × I) such that D is Y2-equivalent to

∏m
i=1(Σ × I)Gi . Since surgery

along a Y -graph with special leaf is equivalent to a Dehn twist along a bounding simple
closed curve of genus 1, each cobordism (Σ× I)Gi is J2-equivalent to (Σ× I). Using the
fact that “Y2 ⇒ J2”, we conclude that

M
J2∼ D ◦M ′ J2∼

m∏
i=1

(Σ× I)Gi ◦M ′
J2∼ (Σ× I) ◦M ′ = M ′.

6.2. Proof of Theorem C. The necessary condition in Theorem C follows from Lemma
6.1 and the next result (with k = 3).

Lemma 6.2. Let M,M ′ ∈ IC. If M is Jk-equivalent to M ′, then we have

τ(M ′, ∂−M
′; ξ0)− τ(M,∂−M ; ξ0) ∈ Ik.

The analogous statement for closed 3-manifolds is proved in [42, Lemma 4.14]. The
proof is easily adapted to homology cylinders: see the proof of Theorem 3.11.

To prove the sufficient condition in Theorem C, we need the following result of Morita.

Proposition 6.3 (Morita [51]). There exists a homology 3-sphere P that is J3-equivalent
to S3 and whose Casson invariant is +1.

This is proved in [51, Proposition 6.4]. Since this will play a crucial role in the sequel,
we would like to develop a little bit Morita’s argument.

Proof of Proposition 6.3. Let R be a compact connected oriented surface of genus 2 with
one boundary component, and let j : R→ S3 be a Heegaard embedding as explained in
§3.3. Morita shows that there exists an element ψ ∈ M(R)[3] such that λj(ψ) = 1. To
prove this, he uses his decomposition formula for the Casson invariant (which is recalled

in §7.1) and he considers the following element of
(
Λ2H ⊗ Λ2H

)S2 :

s1 := (α1 ∧ β1)↔ (α2 ∧ β2)− (α1 ∧ α2)↔ (β1 ∧ β2) + (α1 ∧ β2)↔ (β1 ∧ α2).

Note that s1 ∈ Λ4H ⊂
(
Λ2H ⊗ Λ2H

)S2 . Morita claims that there exists a family of
elements u1, v1, . . . , ur, vr of H such that ω(ui, vi) = 1 for each i ∈ {1, . . . , r}, and

(6.1) s1 = 3 · (α1 ∧ β1 + α2 ∧ β2)⊗2 +
r∑
i=1

±(ui ∧ vi)⊗2.

For example, it can be checked that the following equality holds

s1 = 3 · (α1 ∧ β1 + α2 ∧ β2)⊗2

+
Ä
(2α1 + β2) ∧ (β1 + α2)

ä⊗2 −
Ä
(α1 + β1 + α2) ∧ (α1 + β1 + β2)

ä⊗2

+
Ä
(α1 − β2) ∧ β1

ä⊗2
+
Ä
α1 ∧ (β1 − α2)

ä⊗2

− 2 ·
Ä
α1 ∧ (β1 + α2)

ä⊗2 − 2 ·
Ä
α2 ∧ (α1 + β2)

ä⊗2

−
Ä
α1 ∧ (β1 + α2 + β2)

ä⊗2
+
Ä
α2 ∧ (α1 + β1 + β2)

ä⊗2

+
Ä
(α1 + β1 + α2) ∧ β2

ä⊗2 −
Ä
(α1 + α2 + β2) ∧ β1

ä⊗2

+
Ä
α1 ∧ (β1 + β2)

ä⊗2 −
Ä
(β1 + α2) ∧ β2

ä⊗2
+
Ä
(α1 + α2) ∧ β1

ä⊗2

− 7 · (α1 ∧ β1)⊗2 − 2 · (α2 ∧ β2)⊗2,

which proves the existence of such a family.
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Now, for each pair of elements (ui, vi) such that ω(ui, vi) = 1, there exists some
φi ∈ Sp(H) such that φi(ui) = α1 and φi(vi) = β1. Therefore, there exists a genus
one bounding simple closed curve γi such that the Dehn twist Tγi along γi satisfies
τ2(Tγi) = (ui∧vi)⊗2. Let also γ0 be a genus two bounding simple closed curve such that
τ2(Tγ0) = (α1 ∧ β1 + α2 ∧ β2)⊗2. (Here, we have used Morita’s formula [51, Proposition
1.1] for τ2: see (7.8) below.) Then

ψ := T−3
γ0 ◦

r∏
i=1

T∓1
γi ∈M(R)[2]

has the desired properties. Indeed we have

τ2(ψ) = {−s1} = 0 ∈
Ä
Λ2H ⊗ Λ2H

äS2
/Λ4H,

so that ψ actually belongs to M(R)[3], and

λj(ψ) = − 1

24
d(ψ) = − 1

24
(−3 · 8 + 0) = 1.

Here, d : M(R)[2] → Z denotes Morita’s core of the Casson invariant and two of his
formulas are used: see (7.3) and (7.2) below. This completes the proof. �

We now prove the sufficient condition in Theorem C. Let M,M ′ ∈ IC be such that
ρ3(M) = ρ3(M ′) and α(M) = α(M ′). Since IC/Y3 is a group [18, 22], there is a D ∈ IC
such that M is Y3-equivalent to D ◦M ′. This D satisfies ρ3(D) = 1 and α(D) = 0. Let
P be the homology 3-sphere from Proposition 6.3 and set

D′ := (Σ× I) ]P ]λj(D).

Then, D and D′ share the same invariants ρ3, α and λj so that they are Y3-equivalent
by Theorem A. Using the fact that “Y3 ⇒ J3”, we conclude that

M
J3∼ D ◦M ′ J3∼ D′ ◦M ′ = M ′]P ]λj(D) J3∼ M ′.

Remark 6.4. According to Habiro [22], the Y4-equivalence for homology 3-spheres is
also classified by the Casson invariant. One can wonder whether there exists a homology
3-sphere that is J4-equivalent to S3 and whose Casson invariant is +1. It would follow
from an affirmative answer to this question, and the same argument as above, that any
homology 3-sphere is J4-equivalent to S3, thus improving Pitsch’s result [59].

7. Core of the Casson invariant for homology cylinders

In this section, we extend Morita’s definition of the core of the Casson invariant
[51, 53] to the monoid KC = C[2] (Theorem D). At this point, it is important to em-
phasize how our sign conventions and notation differ from Morita’s. The k-th Johnson
homomorphism τk : M[k] → H ⊗ Lk+1(H) defined in §3.1 corresponds to −τk+1 in
Morita’s papers. (Note the shift of index and the minus sign: we have identified H with
H∗ by h 7→ ω(h, ·) while Morita uses the map h 7→ ω(·, h) in his papers.) Besides, for a
Heegaard embedding j : Σ→ S3, our map λj ◦ c : I → Z defined in §3.3 corresponds to
−λ∗j in Morita’s papers.

7.1. A quick review of Morita’s work. We summarize some of the results obtained
by Morita in [51, 53]. Let j : Σ→ S3 be a Heegaard embedding as in §3.3. Morita proved
that the restriction of λj to K =M[2] is a group homomorphism. This restricted map
“suffices” for the understanding of the Casson invariant, since any homology 3-sphere
is J2-equivalent to S3. Furthermore, Morita showed that λj : K → Z decomposes as a
sum of two homomorphisms, one being completely determined by the second Johnson
homomorphism τ2, and the other one – which he calls the core of the Casson invariant –
being independent of the embedding j. Let us recall this decomposition in more detail.
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To define the first of the two homomorphisms in Morita’s decomposition, let A be the
algebra over Z generated by elements l(u, v), for each pair of elements u, v of H, and
subject to the relations

l(n · u+ n′ · u′, v) = n · l(u, v) + n′ · l(u′, v) and l(v, u) = l(u, v) + ω(u, v)

for all u, u′, v ∈ H and n, n′ ∈ Z. The embedding j : Σ → S3 defines an algebra
homomorphism εj : A → Z by setting

εj (l(u, v)) := lk(u, v+),

where v+ is a push-off of v in the positive normal direction of Fg = j(Σ) ⊂ S3. Let

θ :
(
Λ2H ⊗ Λ2H

)S2 → A be the group homomorphism defined by®
θ ((u ∧ v)⊗ (u ∧ v)) := l(u, u)l(v, v)− l(u, v)l(v, u)
θ ((a ∧ b)↔ (c ∧ d)) := l(a, c)l(b, d)− l(a, d)l(b, c)− l(d, a)l(c, b) + l(c, a)l(d, b).

Using Casson’s formula relating the variation of his invariant under surgery along a (±1)-
framed knot to the Alexander polynomial of that knot, Morita was able to compute the
value of λj on a twist Tγ along a bounding simple closed curve γ ⊂ Σ. He found that

(7.1) λj(Tγ) = εj ◦ θ(ωγ ⊗ ωγ)

where ωγ is the symplectic form of the subsurface of Σ bounded by γ. (More precisely,

we have ωγ =
∑h
i=1 ui ∧ vi if the subsurface has genus h and if (ui, vi)

h
i=1 is any sym-

plectic basis of its first homology group.) Let also d :
(
Λ2H ⊗ Λ2H

)S2 → Z be the
homomorphism defined by®

d ((u ∧ v)⊗ (u ∧ v)) := 0
d ((a ∧ b)↔ (c ∧ d)) := ω(a, b)ω(c, d)− ω(a, c)ω(b, d) + ω(a, d)ω(b, c).

It turns out that qj := εj ◦θ+ 1
3d vanishes on Λ4H ⊂

(
Λ2H ⊗ Λ2H

)S2 , so that we can see
it as a homomorphism qj : D2(H)→ Z. (Recall that the target D2(H) of τ2 is identified

with
(
Λ2H ⊗ Λ2H

)S2 /Λ4H by Proposition 3.1.) Hence we obtain a homomorphism

qj := −qj ◦ τ2 : K −→ Q.

Another description of qj is given by Perron in [58] using Fox’s differential calculus.
The definition of the second homomorphism in Morita’s decomposition of λj is more

delicate. Let k :M→ H be a crossed homomorphism whose homology class generates
H1(M;H) ' Z, see [52], and which is invariant under stabilization of the surface Σ.
There is a 2-cocycle ck : M ×M → Z associated to k by the formula ck(φ, ψ) :=
ω(k(φ−1), k(ψ)). This cocycle represents the first characteristic class of surface bundles
e1 ∈ H2(M) introduced by Morita in [49, 50]. Meyer’s signature 2-cocycle on Sp(H) [46]
composed with ρ1 :M→ Sp(H) gives another 2-cocycle τ on M such that [−3τ ] = e1.
Since M is perfect (in genus g ≥ 3), there is a unique 1-cochain dk : M → Z whose
coboundary is ck + 3τ and which is preserved by stabilization of the surface Σ. Because
the 1-cocycle k vanishes on K, the restriction of dk to K is a group homomorphism

d : K −→ Z

which does not depend on the choice of k.
The group K is according to Johnson [32] generated by Dehn twists along bounding

simple closed curves, and Morita proves that

(7.2) d(Tγ) = 4h(h− 1)

for any bounding simple closed curve γ ⊂ Σ of genus h. He deduces from (7.1) and (7.2)
the following decomposition formula for λj :

(7.3) −λj =
1

24
d+ qj : K −→ Z.
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Recall that any homology 3-sphere is J3-equivalent to S3, as expected by Morita [51]
and proved by Pitsch [59]. Thus the homomorphism d : K → Z, and more precisely its
restriction to the subgroupM[3], contains all the topological information on homology 3-
spheres carried by the Casson invariant: Morita calls d the core of the Casson invariant.
Observe that d takes values in 8Z according to (7.2), and that it is obviously trivial in
genus g = 0, 1.

7.2. Proof of the existence in Theorem D. We now go back to homology cylinders
and we consider the submonoid KC = C[2] of IC. We shall prove that, for any genus
g ≥ 0, the group homomorphism d : K → 8Z can be extended to a Y3-invariant and
M-conjugacy invariant monoid homomorphism d : KC → 8Z. We start by considering
the map

d′′ : KC −→ Q
defined by d′′ := p2,2 ◦ Z2. In other words, d′′(M) is the coefficient of in Z(M).

Lemma 7.1. The map d′′ is a monoid homomorphism and has the following properties:

(i) It is canonical, i.e. it does not depend on the choices which are needed in the
construction of the LMO homomorphism Z;

(ii) It is invariant under Y3-equivalence and conjugation by M;
(iii) It takes values in 1

8Z.

Proof. For any M,M ′ ∈ IC, we have Z(M ◦M ′) = Z(M)?Z(M ′) so that the coefficient

of in Z(M ◦M ′) is the sum of the same coefficients in Z(M) and Z(M ′), plus a

contribution of Z1(M) ? Z1(M ′). By (4.6) the latter vanishes if M,M ′ belong to KC, so
that d′′ is a monoid homomorphism.

To prove (i), observe that for every M ∈ KC the square of {M} ∈ KC/Y3 belongs to
the subgroup Y2IC/Y3 (as follows from [43] or from §5.2). Thus, the formula

(7.4) d′′(M) =
1

2
d′′(M ◦M)

shows that d′′ is determined by its restriction to Y2IC. Since the inverse of Z2 :
(Y2IC/Y3) ⊗ Q → Ac2(HQ) is the surgery map ψ2 ◦ χ2 by (4.5), it does not depend
on the choices involved in the construction of Z. We deduce assertion (i).

The invariance of d′′ under Y3-equivalence is inherited from Z2 : IC → A2(HQ). Since
Z2 : Y2IC → Ac2(HQ) is M-equivariant [23], we have

d′′
Ä
c(f) ◦M ◦ c(f−1)

ä (7.4)
=

1

2
d′′
Ä
c(f) ◦M2 ◦ c(f−1)

ä
=

1

2
d′′(M2)

(7.4)
= d′′(M)

for all M ∈ KC and f ∈M. This proves assertion (ii).

We prove (iii). For any graph clasperG of degree 2 in (Σ×I), we have ‹ZY2 ((Σ× I)G) =
±D where the Jacobi diagram D has the same shape as G [8]. Thus we have‹ZY2 (Y2IC) ⊂ Ac2(L±) ⊂ Ac2(L±Q).

As seen in §4.1, we also have s ◦ϕ (Ac2(L±)) = A<,c2 (H), and it follows from the formula

for χ−1 given in [23] that χ−1
Ä
A<,c2 (H)

ä
is contained in 1

4A
c
2(H). Thus, we have

Z2(Y2IC) ⊂
1

4
Ac2(H) ⊂ Ac2(HQ)

so that d′′(Y2IC) is contained in 1
4Z. We conclude thanks to (7.4) that d′′(KC) ⊂ 1

8Z. �

We are now going to express d′′ in terms of the classical invariants λj , α and τ2. Here
the Heegaard embedding j : Σ→ S3 is chosen compatibly with the system of meridians
and parallels (α, β) as explained in the paragraph preceding Lemma 4.6. We shall denote
by 〈·, ·〉 : L± × L± → Z the symmetric bilinear form defined by

∀i, j ∈ {1, . . . , g}, 〈i+, j−〉 := δi,j , 〈i+, j+〉 := 0 , 〈i−, j−〉 := 0
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and, for all a, b, c, d ∈ L±, we set

HΦ

Ä
a b c d

ä
:= 〈a, d〉 b c + 〈b, c〉 a d − 〈a, c〉 b d − 〈b, d〉 a c ,

HΘ

Ä
a b c d

ä
:=

Ä
〈a, d〉〈b, c〉 − 〈a, c〉〈b, d〉

ä
,

ΦΘ

Ä
a b

ä
:= 〈a, b〉 .

Lemma 7.2. For all M ∈ KC, we have

(7.5) d′′(M) = −λj(M)

2
− 1

4
ΦΘ(α(M))− 1

4
HΘ(τ2(M)).

Here, and in the sequel, a tacit identification between Ac(L±Q) and Ac(HQ) is always

through the “obvious” isomorphism that transforms L±Q-colored diagrams into HQ-

colored diagrams by the rules (4.1). Thus the second Johnson homomorphism

τ2(M) ∈
(
Λ2H ⊗ Λ2H

)S2

Λ4H
⊂
(
Λ2HQ ⊗ Λ2HQ

)S2

Λ4HQ
' S2Λ2HQ

Λ4HQ
' Ac2,0(HQ)

is seen as an element of Ac2,0(L±Q), while the quadratic part of the relative RT torsion

α(M) ∈ S2H ' Ac2,1(H)

is interpreted as an element of Ac2,1(L±).

Proof of Lemma 7.2. The “non-obvious” isomorphism κ : Ac(L±Q) → Ac(HQ) defined

by (4.3) is given in degree 2 by the formulas

κ
Ä
a b c d

ä
= −

a b c d
− 1

2
HΦ

Ä
a b c d

ä
− 1

4
HΘ

Ä
a b c d

ä
,

κ
Ä
a b

ä
= a b +

1

2
ΦΘ

Ä
a b

ä
,

κ( ) = − ,

where the labels on the right-hand side of these equalities are understood as elements of

HQ by the rules (4.1). Using these formulas, we obtain that d′′ = p2,2 ◦ κ ◦ ‹ZY2 is given,
for any M ∈ KC, by

(7.6) d′′(M) = −p2,2 ◦ ‹ZY2 (M) +
1

2
ΦΘ

Ä
p2,1 ◦ ‹ZY2 (M)

ä
− 1

4
HΘ

Ä
p2,0 ◦ ‹ZY2 (M)

ä
.

By Lemma 4.3, we know that

p2,0 ◦ ‹ZY2 (M) = −p2,0 ◦ Z2(M) = −τ2(M),

and by Lemma 4.4, we have that

α(M) = −2p2,1 ◦ Z2(M) = −2

Å
p2,1 ◦ ‹ZY2 (M)− 1

2
HΦ

Ä
p2,0 ◦ ‹ZY2 (M)

äã
.

It follows that

p2,1 ◦ ‹ZY2 (M) = −1

2
α(M) +

1

2
HΦ(p2,0 ◦ ‹ZY2 (M)

ä
= −1

2
α(M)− 1

2
HΦ(τ2(M)).

Finally, recall from (4.10) that the coefficient of p2,2 ◦ ‹ZY2 (M) is 1
2λj(M). The result

follows from these interpretations of p2,i ◦ ‹ZY2 (M) for i = 0, 1, 2 and equation (7.6). �

Recall from Proposition 3.13 that α ◦ c : I → S2H is trivial. Therefore, equation
(7.5) gives another decomposition of λj on the subgroup K:

(7.7) −λj = 2d′′ +
1

2
HΘ ◦τ2 : K −→ Z.
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This identity should be compared to Morita’s decomposition (7.3). Whereas d depends
quadratically on the genus of bounding simple closed curves (7.2), the next lemma
shows that d′′ depends linearly on the genus. Thus the decomposition (7.7) is essentially
Auclair’s formula [2, Theorem 4.4.6].

Lemma 7.3. Let γ ⊂ Σ be a bounding simple closed curve of genus h, and let Tγ denote
the Dehn twist along γ. Then we have d′′(Tγ) = −h/8.

Proof. Since d′′ isM-conjugacy invariant, we can assume without loss of generality that
the curve j(γ) bounds a disk in the lower handlebody of the genus g Heegaard splitting
of S3. Thus the 3-manifold S3(c(Tγ), j) is obtained from S3 by surgery along a (+1)-
framed trivial knot, so that it is homeomorphic to S3. Hence we have λj(Tγ) = 0, and
we deduce from Lemma 7.2 that

d′′(Tγ) = −1

4
HΘ(τ2(Tγ)).

By [51, Proposition 1.1], we have (taking into account the difference in sign conventions)

(7.8) τ2(Tγ) =
1

2

h∑
i=1

αi βi αi βi
+

∑
1≤i<j≤h

αi βi αj βj
.

The result follows from the observations that

HΘ

Ä
αi βi αi βi

ä
= and HΘ

Ä
αi βi αj βj

ä
= 0

for all i 6= j. �

We also need the homomorphism d′ : D2(H) '
(
Λ2H ⊗ Λ2H

)S2 /Λ4H → Z defined
by Morita [53] in the following way:®

d′ ((a ∧ b)⊗ (a ∧ b)) := −3ω(a, b)2

d′ ((a ∧ b)↔ (c ∧ d)) := −4ω(a, b)ω(c, d)− 2ω(a, c)ω(b, d) + 2ω(a, d)ω(b, c).

We get a monoid homomorphism

d′ : KC −→ Z

by setting d′ := −d′◦τ2. Observe that d′ shares the same properties as d′′: it is canonical
and it is invariant under Y3-equivalence as well as under the action ofM by conjugation.
A simple computation based on (7.8) gives

(7.9) d′(Tγ) = h(2h+ 1),

for any bounding simple closed curve γ ⊂ Σ of genus h [53]. Morita proved that, in
genus g ≥ 2, any M-conjugacy invariant group homomorphism K → Z can be written
in a unique way as a linear combination (with rational coefficients) of d and d′|K [53].
The next lemma expresses 8d′′|K in this way.

Lemma 7.4. We have

(7.10) 8d′′|K =
1

6
d− 1

3
d′|K.

Proof. Equation (7.10) can be deduced from (7.3), (7.7) and the definition of d′ by a
direct computation. Alternatively, we can use the fact that K is generated by Dehn
twists along bounding simple closed curves [32]. Let γ ⊂ Σ be a bounding simple closed
curve of genus h. Equations (7.2) and (7.9) give

1

6
d(Tγ)− 1

3
d′(Tγ) =

1

6
· 4h(h− 1)− 1

3
· h(2h+ 1) = −h

and we conclude thanks to Lemma 7.3. �
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To prove the existence in Theorem D, we define the monoid map d : KC → Z by

(7.11) d := 2d′ + 48d′′.

According to Lemma 7.1, this map d is M-conjugacy invariant as well as Y3-invariant.
According to Lemma 7.4, it extends Morita’s map d : K → Z through c. The invariant
d : KC → Z can be written explicitly in terms of λj , α and τ2 using Lemma 7.2:

(7.12) ∀M ∈ KC, d(M) = −24λj(M)− 12ΦΘ(α(M))− 12 HΘ(τ2(M))− 2d′(τ2(M)).

Besides, it can be written explicitly in terms of Z using Lemma 4.3:

(7.13) ∀M ∈ KC, d(M) = −2d′ ◦ p2,0 ◦ Z2(M) + 48p2,2 ◦ Z2(M).

It remains to prove that d(KC) is contained in 8Z. For this, we recall from §5.2 that we
have an isomorphism ψ[2] : A<,c[2] (H)→ KC/Y3 and we shall actually compute d◦ψ[2](D)

for each generator D of A<,c[2] (H).

Proposition 7.5. The monoid homomorphism d : KC → Z takes the following values
on the generators of the group KC/Y3:

d ◦ ψ[2]

Ä ä
= 48,(7.14)

d ◦ ψ[2]

Å
<a b

ã
= 24ω(a, b),(7.15)

d ◦ ψ[2]

Å
< < <a b c d

ã
= 16ω(a, b)ω(c, d)− 16ω(a, c)ω(b, d)− 8ω(a, d)ω(b, c),(7.16)

d ◦ ψ[2](h, h
′) = 12ω(h, h′)(ω(h, h′)− 1),(7.17)

d ◦ ψ[2](h) = 0,(7.18)

d ◦ ψ[2](1) = −24,(7.19)

Proof. Since Z2 ◦ ψ2 = χ−1, we obtain that

Z2 ◦ ψ2

Ä ä
=

Z2 ◦ ψ2

Å
<a b

ã
= a b +

1

2
ω(a, b)

Z2 ◦ ψ2

Å
< < <a b c d

ã
=

b c d a
+

1

4
(ω(a, b)ω(c, d)− ω(a, c)ω(b, d))

+
1

2

Ü
ω(a, b) c d − ω(a, c) b d

+ω(c, d) a b − ω(b, d) a c

ê
.

We deduce from (7.13) the formulas (7.14), (7.15) and (7.16). Next, since d is additive,
formula (7.17) is derived from equations (7.15) and (7.16) using relation (G1). Then
(7.17) and relation (G0) imply (7.18). Finally, (7.14) and relation (G3) give (7.19). �

7.3. Proof of the unicity in Theorem D. We need some representation theory of
the symplectic group Sp(HQ) ' Sp(2g;Q). In particular, we need the following facts.

Lemma 7.6. Let V be a finite-dimensional rational Sp(2g;Q)-module.

(i) If L is an abelian subgroup of V stable by the action of Sp(2g;Z), then L⊗Q ⊂ V
is stable by the action of Sp(2g;Q).

(ii) If L is a lattice of V stable by the action of Sp(2g;Z), then the action of Sp(2g;Q)
on V = L⊗Q is determined by the action of Sp(2g;Z) on L.

(iii) If L is a lattice of V stable by the action of Sp(2g;Z) and if f : L → Z is an
Sp(2g;Z)-invariant group homomorphism, then f ⊗ Q : V → Q is Sp(2g;Q)-
invariant.
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These facts may belong to folklore. Statement (i) is proved by Asada and Nakamura in
[1, (2.2.8)]. Statements (ii), (iii) can be proved using the same kind of arguments.

We shall assume in the sequel that g ≥ 3. We denote

Y3I := ker
(
I c // IC // // IC/Y3

)
which is a subgroup of I sitting between Γ3I and Γ2I.

Lemma 7.7. The action of M by conjugation on KC (respectively on K) induces an
action of Sp(H) ' M/I on the abelian group KC/Y3 (respectively on K/Y3I), and
this extends in a unique way to an action of Sp(HQ) on the vector space (KC/Y3) ⊗ Q
(respectively on (K/Y3I)⊗Q). Under the assumption that g ≥ 3, the mapping cylinder
construction induces an isomorphismÅ K

Y3I
⊗Q
ãSp(HQ)

c−→
'

ÅKC
Y3
⊗Q
ãSp(HQ)

between the Sp(HQ)-invariant subspaces.

Proof. Let f ∈ I and M ∈ KC. Since KC/Y3 is contained in the center of the group
IC/Y3 by Lemma 5.2, the cobordism c(f)◦M ◦c(f−1) is Y3-equivalent to M . Therefore
the action ofM on KC/Y3 factorizes toM/I ' Sp(H). Regarding K/Y3I as a subgroup
of KC/Y3 via c, we see that the same is true for the action of M on K/Y3I.

It follows from [43] that the quotient group (KC/Y3)/(Y2IC/Y3) ' KC/Y2 is 2-torsion,
so that the inclusion Y2IC ⊂ KC induces an Sp(H)-equivariant isomorphism

(Y2IC/Y3)⊗Q '−→(KC/Y3)⊗Q.
Since the action of Sp(H) on Y2IC/Y3 extends to an action of Sp(HQ) on (Y2IC/Y3)⊗Q
[23], the action of Sp(H) on KC/Y3 extends to an action of Sp(HQ) on (KC/Y3)⊗Q and
this extension is unique by (ii) of Lemma 7.6. The same is true for the action of Sp(H)
on K/Y3I by (i) and (ii) of Lemma 7.6.

To prove the last statement, we use the commutative diagram of Sp(HQ)-modules

Γ2I
Γ3I ⊗Q // //

%%

c
%%KKKKKKKKK
Γ2I
Y3I ⊗Q

c

��

' // K
Y3I ⊗Q

c

��
Y2IC
Y3
⊗Q ' // KC

Y3
⊗Q

where the horizontal maps are induced by inclusions and verticals maps are induced by
the mapping cylinder construction. The injectivity of the oblique map is proved in [23,
Corollary 1.6] assuming that g ≥ 3. The bijectivity of (Γ2I/Y3I) ⊗ Q → (K/Y3I) ⊗ Q
follows from the fact that K/Γ2I is 2-torsion [33]. Passing to the Sp(HQ)-invariant
subspaces, we obtain the following commutative diagram of vector spaces:Ä

Γ2I
Γ3I ⊗Q

äSp(HQ)

c

��

' //' //
Ä
K
Y3I ⊗Q

äSp(HQ)

c

��Ä
Y2IC
Y3
⊗Q
äSp(HQ) ' //

Ä
KC
Y3
⊗Q
äSp(HQ)

The decompositions into irreducible Sp(HQ)-modules done in [23, §5] show that the first
vertical map is an isomorphism. The conclusion follows. �

We can now prove the unicity in Theorem D assuming that g ≥ 3. We deduce from
Morita’s formula (7.3) that the group homomorphism d : K → Z vanishes on Y3I.
Therefore we have a linear map

d⊗Q : (K/Y3I)⊗Q −→ Q.
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Since d isM-conjugacy invariant, we deduce from Lemma 7.6 (iii) that d⊗Q is Sp(HQ)-
invariant. We have the commutative diagram

HomSp(HQ)

Ä
KC
Y3
⊗Q,Q

ä ' //

��

HomQ

ÅÄ
KC
Y3
⊗Q
äSp(HQ)

,Q
ã

��

HomSp(HQ)

Ä
K
Y3I ⊗Q,Q

ä ' // HomQ

ÅÄ
K
Y3I ⊗Q

äSp(HQ)
,Q
ã

where the horizontal maps are restrictions and are isomorphisms according to Schur’s
lemma; the vertical maps of that diagram are induced by c. We deduce from Lemma
7.7 that d ⊗ Q extends in a unique way through c to an Sp(HQ)-invariant linear map
(KC/Y3) ⊗ Q → Q. According to Lemma 7.6 (iii), an Sp(HQ)-invariant linear map
(KC/Y3) ⊗ Q → Q is the same as an M-conjugacy invariant and Y3-invariant monoid
map KC → Q. This proves the unicity statement in Theorem D (as well as the existence
statement if one allows values in Q instead of 8Z).

7.4. A stable version of Theorem D. Whatever the genus g ≥ 0 of Σ is, formula
(7.12) defines an M-conjugacy invariant and Y3-invariant monoid map d : KC → 8Z
which extends Morita’s map on the subgroup K. The invariants λj , α and τ2 being
preserved by stabilization of the surface Σ, the homomorphism d is invariant under
stabilization. Thus we can summarize the results of this section in the following way.

Theorem 7.8. There is a unique way to define, for each compact connected oriented
surface Σ with one boundary component, a monoid homomorphism d : KC(Σ)→ Z that
has the following properties:

• d is Y3-invariant and M(Σ)-conjugacy invariant;
• d ◦ c : K(Σ)→ Z coincides with Morita’s core of the Casson invariant;
• d is preserved under stabilization of the surface Σ as shown in Figure 2.1:

KC(Σ) // //

d
%%KKKKKKKKKKK

KC(Σs)

d
��

Z
Moreover, this homomorphism d takes values in 8Z and is given by

∀M ∈ KC(Σ), d(M) = −24λj(M)− 12ΦΘ(α(M))− 12 HΘ(τ2(M))− 2d′(τ2(M)).

Appendix A. Some results from calculus of claspers

In this appendix we have collected several results of calculus of claspers which are used
in the paper. In particular, §A.2 contains a list of lemmas dealing with surgeries along
Y -graphs that have “special” leaves. Several of these technical results were previously
established, in a stronger form, by Auclair in [2]. (Note that his results are stated at the
level of the Goussarov–Habiro filtration by finite-type invariants, rather than at the level
of the Y -filtration of homology cylinders. Moreover, Auclair adopts in [2] Goussarov’s
convention for claspers [19, 15] instead of Habiro’s convention [22] used here.)

The definition of claspers is recalled in §2.2, but it will be convenient to use in this
appendix a slightly more general definition. Specifically, we shall fully use Habiro’s
original definition, where claspers are decomposed into edges, leaves, nodes and boxes
[22]. A box is a disk with three edges attached, one being distinguished from the
other two. This distinction is done by drawing a box as a rectangle, as in Figure
A.1. In the process of replacing a clasper with a disjoint union of basic claspers, as
explained in §2.2, each box is replaced with three leaves as depicted in Figure A.1.
Connected claspers without boxes are called graph claspers and are presented in §2.2.
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The drawing convention for claspers are those of [22, Figure 7], except for the following:
a ⊕ (respectively a 	) on an edge represents a positive (respectively negative) half-twist.
(This replaces the convention of a circled S (respectively S−1) used in [22].)

Figure A.1. How to replace a box with three leaves.

A.1. Standard calculus of claspers. In [22, Proposition 2.7], Habiro gives a list of
12 moves on claspers which give equivalent claspers, that is claspers with homeomorphic
surgery effect. We will freely use Habiro’s moves (which are derived from Kirby calculus)
by referring to their numbering in Habiro’s paper.

We start by recalling some basic lemmas of calculus of claspers. The proofs are
omitted, as they use the same techniques as in [22, §4] and [19, 15] (where similar
statements appear). See also Appendix E of [57].

Lemma A.1. Let G be a degree k graph clasper in a 3-manifold M , and let K be some
framed knot in M , disjoint from G. Let G′ be obtained from G by a connected sum,
along some band b, of an edge with the knot K. Then we have

MG
Yk+2∼ MG′∪H ,

where H is a copy, disjoint from G′, of the degree k + 1 graph clasper G ∪ b ∪K.

Lemma A.2. Let T1 ∪ T2 be a disjoint union of two graph claspers of degree k1 and k2

respectively in a 3-manifold M . Let T ′1 ∪ T ′2 be obtained by a crossing change of a leaf
f1 of T1 with a leaf f2 of T2. Then we have

MT1∪T2
Yk1+k2+1∼ MT ′1∪T

′
2∪T ,

where T is a copy, disjoint from T ′1∪T ′2, of some graph clasper of degree k1 +k2 obtained
from T1 ∪ T2 by connecting the edges incident to f1 and f2.

It is convenient to state the next two lemmas in the case of graph claspers in (Σ× I).

Lemma A.3. Let G be a degree k graph clasper in (Σ × I). Let f1 and f2 be the two
framed knots obtained by splitting a leaf f of G along an arc α, i.e. we have f∪α = f1∪f2

and f1 ∩ f2 = α (see e.g. Figure A.5). Then we have

(Σ× I)G
Yk+1∼ (Σ× I)G1 ◦ (Σ× I)G2 ,

where Gi denotes the graph clasper obtained from G by replacing f by fi.

Lemma A.4. Let G be a degree k graph clasper in (Σ× I). Let G′ be a clasper which
differs from G only by a half-twist on an edge, and let G be obtained from G by reversing
the cyclic order on the attaching regions of the three edges at one node. Then we have

(Σ× I)G ◦ (Σ× I)G′
Yk+1∼ (Σ× I)G ◦ (Σ× I)G

Yk+1∼ (Σ× I).

The latter part of Lemma A.4 is a version of the AS relation for claspers. Claspers also
satisfy relations analogous to the IHX and STU relations, which we shall not recall here.
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A.2. Refined calculus of claspers for Y -graphs with special leaves. Let G be a
clasper in a 3-manifold M and let m ∈ Z. An m-special leaf of G is a leaf f of G that
bounds a disk in M with respect to which it is m-framed, and such that this disk is
disjoint from G\f . Claspers with m-special leaves have been studied in [45]. A 0-special
leaf of G is usually called a trivial leaf. If a graph clasper G in M contains a trivial leaf,
then MG is homeomorphic to M [22, 15]. A (−1)-special leaf is simply called a special
leaf. Recall the following result from [45], see also [2, 15].

Lemma A.5. Let G be a graph clasper of degree k ≥ 2 with an m-special leaf in a

3-manifold M (where m ∈ Z). Then we have MG
Yk+1∼ M.

This result, however, is not true in degree k = 1 for m odd, and in particular for Y -
graphs with special leaves. The purpose of this subsection is to provide refinements of
the results of §A.1 for Y -graphs with special leaves. Before we do so, let us prepare a
few auxiliary results.

In the next statement, the figure represents claspers in a given 3-manifold which are
identical outside a 3-ball, where they are as depicted.

Lemma A.6. The moves (a) and (b) of Figure A.2 produce equivalent claspers.

;
(a) (b)

Figure A.2. The moves (a) and (b).

Proof. Move (a) is an immediate consequence of [15, Theorem 3.1] (taking into account
the fact that the convention used in [15] for the definition of the surgery along a clasper
is the opposite of the one used in [22] and the present paper).

Now we consider the clasper on the left-hand side of the figure illustrating move (b).
By Habiro’s move 5 and move 7, this clasper is equivalent to

= ∼ .

The proof then follows from Habiro’s move 2. �

The next lemma is in some sense a continuation of move (b) for Y -graphs.

Lemma A.7. Let G be a clasper which “consists of” two Y -graphs in (Σ× I), sharing
a special leaf via a box as depicted in Figure A.3. Then we have

(Σ× I)G
Y3∼ (Σ× I)Y ′ ◦ (Σ× I)Y ′′ ◦ (Σ× I)H ,

where Y ′, Y ′′ and H are the claspers represented in Figure A.3.

G Y ′ Y ′′ H G′

Figure A.3
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Remark A.8. In Figure A.3, it is implicit that the leaves of Y ′ ∪ Y ′′ (respectively H
and G′) are parallel copies of the leaves of G. In particular, a choice of orientation on
the leaves of Y ′ ∪ Y ′′ induces one for H and G′. Similar comments apply to subsequent
figures.

Proof of Lemma A.7. By using move (b), followed by several applications of Habiro’s
moves 11 and 5, we have that G is equivalent to the clasper G′ represented on the right-
hand side of Figure A.3. Observe that one of the three components of G′ is a graph
clasper of degree 2, which we denote by H ′. On one hand, H ′ can be homotoped, by a
sequence of crossing changes in (Σ× I), to a “horizontal layer” Σ× [−1,−1 + ε] which is
disjoint from the rest of G′. Thus, by applying Lemma A.1 and Habiro’s move 3 first, and

by using Lemma A.2 subsequently, we obtain that (Σ× I)G
Y3∼ (Σ× I)Y ′∪Y ′′ ◦ (Σ× I)H .

On the other hand, it follows from Lemma A.2 and Lemma A.5 that (Σ × I)Y ′∪Y ′′
Y3∼

(Σ× I)Y ′ ◦ (Σ× I)Y ′′ . This concludes the proof. �

Finally, we will need the following.

Lemma A.9. Let G be a disjoint union of two Y -graphs in (Σ × I) which only differ
by a positive half-twist on an edge, as represented in Figure A.4. Then we have

(Σ× I)G
Y3∼ (Σ× I)C ,

where C is a degree 2 graph clasper in (Σ× I) as represented in Figure A.4.

G C

Figure A.4

Proof. We have the following equivalences of claspers:

∅ ∼ ∼ ∼ U

The first equivalence follows from Habiro’s move 4, and the second one is obtained by
applying Habiro’s moves 11 and 5. The third equivalence follows from Habiro’s moves
12 and 5: the resulting clasper is denoted by U . Next, we apply Habiro’s move 11 and
move 5 several times and, using Lemma A.1 and Lemma A.2 in a way similar to the
proof of Lemma A.7, we obtain that

(Σ× I)U
Y3∼ (Σ× I)G ◦ (Σ× I)C′ .

Here C ′ is a degree 2 graph clasper which only differs from C by three half-twists on
edges. The result then follows from Lemma A.4. �

We can now prove the main results of this appendix.

Lemma A.10 (Edge Sliding). Let Y be a Y -graph with special leaf in a 3-manifold M .
Let Y ′ be obtained from Y by a connected sum, along some band b, of an edge e with

some framed knot in M disjoint from Y . Then we have MY
Y3∼ MY ′ .

Proof. By Lemma A.1, we have that MY
Y3∼ MY ′∪H where H is a degree 2 graph clasper,

disjoint from Y ′, and with a special leaf. By Lemma A.2, we can assume that the disk
of this special leaf is disjoint from Y ′. We conclude thanks to Lemma A.5. �
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Lemma A.11 (Leaf Splitting). Let Y be a Y -graph with one special leaf in (Σ × I).
Let f1 and f2 be two framed knots obtained by splitting a leaf f of Y along an arc α as
shown in Figure A.5. Then we have

(Σ× I)Y
Y3∼ (Σ× I)Y ′ ◦ (Σ× I)Y ′′ ◦ (Σ× I)H ,

where Yi denotes the Y -graph obtained from Y by replacing f by fi (i = 1, 2), and where
H is the degree 2 graph clasper shown in Figure A.5.

Y
f

f ′

α f1 f2

Y ′′

Y ′

f1 f2

H

f1 f2

G

Figure A.5

Proof. Using Habiro’s move 7, followed by moves 11 and 5, we see that Y is equivalent
to the clasper G shown in Figure A.5. Thanks to Habiro’s moves 5 and 1, G can be
transformed into a clasper to which we can apply Lemma A.7. The H-graph resulting
from this application can be transformed into H thanks to Lemma A.1. �

We shall need the following three consequences of Lemma A.11.

Corollary A.12. Suppose that, in the statement of Lemma A.11 and Figure A.5, the
leaf f ′ is special. Then we have

(Σ× I)Y
Y3∼ (Σ× I)Y ′ ◦ (Σ× I)Y ′′ ◦ (Σ× I)P ,

where P is obtained from H by deleting the two parallel copies of f ′ and connecting the
edges by an untwisted band.

Proof. It suffices to show that, in this situation, we have (Σ × I)H
Y3∼ (Σ × I)P . By

Habiro’s move 2, we can freely insert a pair of small Hopf-linked leaves in an edge of
H so as to obtain a union of two Y -graphs with two parallel special leaves. The result
then follows from Lemma A.7 �

Corollary A.13. Suppose that, in the statement of Lemma A.11, the leaf f2 bounds a
genus 1 surface disjoint from Y with respect to which f2 is 0-framed. Then we have

(Σ× I)Y
Y3∼ (Σ× I)Y ′ .

Proof. By Habiro’s move 9, the Y -graph Y ′′ is equivalent to a degree 2 graph clasper
with a special leaf, and the H-graph H is equivalent to a degree 3 graph clasper. The
result then follows from Lemma A.5. �

Corollary A.14. Let Y be a Y -graph with one special leaf in (Σ × I), and let Y+ be
obtained from Y by replacing the special leaf with a (+1)-special leaf. Then we have

(Σ× I)Y ◦ (Σ× I)Y+
Y3∼ (Σ× I).

Proof. It suffices to observe that a 0-framed unknot decomposes as a band sum of a
(−1)-framed and a (+1)-framed unknot. Since a graph clasper with a 0-special leaf is
equivalent to the empty clasper, we have by Lemma A.11 that

(Σ× I)
Y3∼ (Σ× I)Y ◦ (Σ× I)Y+ ◦ (Σ× I)H ,

where H is an H-graph with a special leaf. The result then follows from Lemma A.5. �

We now continue to give the main results of this appendix.
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Lemma A.15 (Edge Twisting). Let Y be a Y -graph with one special leaf in (Σ × I),
and let Y ′ be obtained from Y by inserting a half-twist in the ∗-marked edge of Y , see
Figure A.6. Then we have

(Σ× I)Y ◦ (Σ× I)Y ′
Y3∼ (Σ× I)H ,

where H is a degree 2 graph clasper in (Σ× I) as represented in Figure A.6.

Y
∗

H G

Figure A.6

Proof. By sliding an edge along a (−1)-framed unknot, a positive half-twist on that
edge becomes a negative half-twist. So, thanks to Lemma A.10, we can assume that the
half-twist given to the ∗-marked edge of Y is positive. Then consider the clasper G on
the right-hand side of Figure A.6. On one hand, we have by Lemma A.7

(Σ× I)G
Y3∼ (Σ× I)Y ◦ (Σ× I)Y ′ ◦ (Σ× I)H′ ,

where H ′ is a certain H-graph. By Lemma A.4, we can replace H ′ by another H-graph
which only differs from H by a half-twist on an edge. So we deduce that

(Σ× I)G ◦ (Σ× I)H
Y3∼ (Σ× I)Y ◦ (Σ× I)Y ′ .

On the other hand, Lemma A.9 tells that (Σ× I)G is Y3-equivalent to (Σ× I)C , where
C is a degree two graph clasper with a special leaf. So we deduce from Lemma A.5 that
(Σ× I)G is Y3-equivalent to (Σ× I). The conclusion follows. �

Lemma A.16 (Symmetry). Let Y be a Y -graph with a special leaf in (Σ× I), and let
Y be obtained from Y by reversing the cyclic order on the attaching regions of the three
edges at its node, as illustrated below.

Y Y

Then we have (Σ× I)Y
Y3∼ (Σ× I)Y .

Proof. Observe that Y is isotopic to a copy of Y with a positive half-twist inserted on
each edge that is incident to a non-special leaf (see [15, page 92] for example). Choose
one of the two non-special leaves of Y , and denote by Y ′ the Y -graph obtained from Y by
inserting a positive half-twist in the corresponding edge. Then by a double application
of Lemma A.15 and by using Lemma A.4 together with Lemma A.1, we obtain that

(Σ× I)Y ◦ (Σ× I)Y ′
Y3∼ (Σ× I)Y ◦ (Σ× I)Y ′ .

The result follows since the quotient monoid IC/Y3 is a group. �

Lemma A.17 (Doubling). Let Y be a Y -graph with one special leaf in (Σ × I). Then
we have

((Σ× I)Y )2 Y3∼ (Σ× I)H ◦ (Σ× I)P

where H and P are the graph claspers represented in Figure A.7.
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Y H P

G C

Figure A.7

Proof. Consider the claspers G and C shown on the right-hand side of Figure A.7. On

one hand, we have by Lemma A.9 that (Σ × I)G
Y3∼ (Σ × I)C . By Habiro’s move 2, we

can freely insert a pair of small Hopf-linked leaves in the half-twisted edge of C, so that

we can apply Lemma A.7, which implies that (Σ× I)C
Y3∼ (Σ× I)P . On the other hand,

a second application of Lemma A.7 shows that

(Σ× I)G
Y3∼ (Σ× I)Y ◦ (Σ× I)Y ′ ◦ (Σ× I)H′ ,

where Y ′ (respectively H ′) only differs from Y (respectively from H) by a positive half-
twist on the edge attached to the special leaf (respectively on the edge connecting the
two nodes). Since Y ′ is isotopic to Y and since (Σ × I)H′ is the inverse of (Σ × I)H
modulo Y3 by Lemma A.4, we conclude that

(Σ× I)P ◦ (Σ× I)H
Y3∼ (Σ× I)G ◦ (Σ× I)H

Y3∼ ((Σ× I)Y )2 . �

We conclude with two particular cases of Lemma A.17. These are easily derived by
making use, again, of Lemma A.7.

Corollary A.18. (1) If Y is a Y -graph in (Σ× I) with two special leaves, then we have

((Σ× I)Y )2 Y3∼ (Σ× I)Φ,

where Φ is the graph clasper represented in Figure A.8.
(2) If Ys is a Y -graph in (Σ× I) with three special leaves, then we have

((Σ× I)Ys)
2 Y3∼ (Σ× I)Θ,

where Θ is the graph clasper represented in Figure A.8.

(1) Y Φ (2) Θ

Figure A.8

Appendix B. Linking numbers in a homology cylinder

In this shorter appendix, we define framing and linking numbers in a homology cylin-
der over Σ and, as a particular case, in the thickened surface (Σ× I). We also refer to
[10] where linking numbers are defined in a more general context. In the sequel, M is a
homology cylinder over Σ, and the inverse of the isomorphism m±,∗ : H1(Σ)→ H1(M)
is denoted by p : H1(M)→ H.

Let K and L be two disjoint oriented knots in M . We denote by N̊(K) an open

regular neighborhood of K disjoint from L, and by i : M \ N̊(K) → M the inclusion.

The long exact sequence in homology for the pair
Ä
M,M \ N̊(K)

ä
yields the short exact

sequence of abelian groups

(B.1) 0 // Z // H1

Ä
M \ N̊(K)

ä p◦i∗
// H // 0
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where 1 ∈ Z is sent to the homology class of the oriented meridian µ(K) of K. We still

denote by m± : Σ→ M \ N̊(K) the corestriction of m± : Σ→ M . The homomorphism

m+,∗ : H → H1(M \ N̊(K)) is a section of (B.1) which, in general, is different from

m−,∗ : H → H1(M \ N̊(K)). Thus there are two “signed” versions of the linking number
of L and K, which are denoted by

Lk+(L,K) ∈ Z and Lk−(L,K) ∈ Z

and are defined by

(B.2) [L]−m±,∗
Ä
p ◦ i∗([L])

ä
= Lk±(L,K) · [µ(K)] ∈ H1

Ä
M \ N̊(K)

ä
.

In other words, Lk±(L,K) is the homological obstruction to “push” L ⊂ M \ K in a
collar neighborhood of ∂±M .

Definition B.1. Let K and L be two disjoint oriented knots in M . The linking number
of K and L is

Lk(L,K) :=
Lk+(L,K) + Lk−(L,K)

2
∈ 1

2
Z.

When Σ is a disk, this definition agrees with the usual notion of linking number in a
homology 3-sphere.

Lemma B.2. Linking numbers in M have the following properties:

(1) The two signed versions of linking numbers are related by

Lk−(L,K)− Lk+(K,L) = 0

Lk−(L,K)− Lk+(L,K) = ω
Ä
p([L]), p([K])

ä
where ω : H ×H → Z is the intersection pairing of Σ.

(2) When M = Σ× I, linking numbers can be computed from regular projections on
Σ× {−1} by the following local formulas:

Lk−(L,K) = ]

K L

− ]
L K

= Lk+(K,L).

(3) Linking numbers are preserved by Torelli surgeries.

Proof. Statement (3) means that, if a Torelli surgery M ; Ms (as defined in §2.1) is
performed along a surface S disjoint from K and L, then we have

Lk±(K,L) = Lk±(Ks, Ls) ∈ Z

where Ks, Ls ⊂ Ms denote the images of K,L ⊂ M . This is easily deduced from (B.2)

by using the isomorphism Φs : H1(M \ N̊(K))→ H1(Ms \ N̊(K)) defined at (2.1).
Statement (2) also follows from (B.2). Assertion (1) is deduced from (2) and (3) using

the fact that any homology cylinder M is obtained from (Σ×I) by a Torelli surgery. �

Finally, we have the following notion of framing number in the homology cylinder M .

Definition B.3. Let F be a framed knot in M , and let F ‖ be the parallel of F induced
by the framing. The framing number of F is

Fr(F ) := Lk(F, F ‖) ∈ Z,

where F and F ‖ are oriented consistently.

The following is deduced from the definition of framing number.

Lemma B.4. Let K and L be two disjoint oriented framed knots in M , and let K]L be
a framed connected sum of K and L. Then, we have

Fr(K]L) = Fr(K) + Fr(L) + 2 Lk(K,L) ∈ Z.
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Appendix C. The LMO homomorphism up to degree 2

The LMO homomorphism Z : IC → A(HQ) being defined from the LMO functor ‹Z,

one can compute Z up to degree 2 using some properties of ‹Z and some of its values
gathered in [8, Table 5.2]. In particular, one can compute in that way the variation of
the monoid homomorphism

Z2 : KC −→ A2(HQ)

under surgery along any H-graph, or, along any Y -graph with one special leaf. In
this appendix, we state such variation formulas which involve the linking and framing
numbers introduced in Appendix B. Since we do not need these formulas in the paper,
we omit the detail of the computations. (Note that special cases of these formulas are
needed in the proof of Proposition 7.5, but they are derived there from the universal
property of the LMO homomorphism.)

Proposition C.1. Let M ∈ IC and let Y be a Y -graph in M with one special leaf and
two oriented leaves K,L as shown below:

K L

Then we have

Z2 (MY )− Z2(M) =
1

2 k l k l
+

1

2

Ä
Lk(K,L)2 + Lk(K,L)− Fr(K) · Fr(L)

ä
·

+
Fr(L)

2 k k +
Fr(K)

2 l l −
Å

1

2
+ Lk(K,L)

ã
· k l

where k, l ∈ H denote the homology classes of K,L respectively.

Proposition C.2. Let M ∈ IC and let G be a H-graph in M whose leaves L1, . . . , L4

are oriented as shown below:

L4

L3L2

L1

Then we have

Z2 (MG)− Z2(M) =
l1 l2 l3 l4

+ Lk(L1, L3) l2 l4
+ Lk(L2, L4) l1 l3

−Lk(L1, L4) l2 l3
− Lk(L2, L3) l1 l4

+ (Lk(L1, L4) Lk(L2, L3)− Lk(L1, L3) Lk(L2, L4)) ·

where l1, . . . , l4 ∈ H denote the homology classes of L1, . . . , L4 respectively.

Proposition C.1 and Proposition C.2 can be used to give independent proofs of the
relations that are shown in Appendix A by means of clasper calculus. Besides, one can
deduce from them the following formulas for the core of the Casson invariant.

Corollary C.3. With the notation of Proposition C.1, we have

d(MY )− d(M) = −24 · Fr(K) Fr(L)

+12
Ä
Lk+(K,L) + Lk+(K,L)2

ä
+ 12

Ä
Lk−(K,L) + Lk−(K,L)2

ä
.
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Corollary C.4. With the notation of Proposition C.2, we have

d(MG)− d(M) = 8 · ω(l1, l2)ω(l3, l4)

−8 ·
Ä

Lk+(L1, L3) Lk+(L2, L4) + Lk−(L1, L3) Lk−(L2, L4)
ä

+8 ·
Ä

Lk+(L1, L4) Lk+(L2, L3) + Lk−(L1, L4) Lk−(L2, L3)
ä

−16 ·
Ä

Lk+(L1, L3) Lk−(L2, L4) + Lk−(L1, L3) Lk+(L2, L4)
ä

+16 ·
Ä

Lk+(L1, L4) Lk−(L2, L3) + Lk−(L1, L4) Lk+(L2, L3)
ä
.

(These formulas generalize those of Proposition 7.5.) Observe that the variation of d
under surgery along a Y -graph with one special leaf belongs to 24Z, while the variation
for an H-graph belongs to 8Z in general. We deduce that the group KC/Y3 is not
generated by the surgeries on (Σ× I) along Y -graphs with one special leaf.
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